Issue 48
Y. Khalfi et alii, Frattura ed Integrità Strutturale, 48 (2019) 208-221; DOI: 10.3221/IGF-ESIS.48.22 221 [11] Aydogdu, M., Ece, M. C. (2006). Buckling and vibration of non-ideal simply supported rectangular isotropic plates, Mech Res Commun, 33(4), pp. 532–540. [12] Hwang, I., Lee, J. S. (2006). Buckling of orthotropic plates under various inplane loads, KSCE J Civ Eng, 10(5), pp. 349–356. [13] Reissner, E. (1945). The effect of transverse shear deformation on the bending of elastic plates, J Appl Mech-T ASME, 12(2), pp. 69–77. [14] Mindlin, R. D. (1951). Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates,“. J Appl Mech-T ASME, 18(1), pp. 31–38. [15] Levinson, M. (1980). An accurate simple theory of the statics and dynamics of elastic plates, Mech Res Commun, 7(6), pp. 343–350. [16] Reddy, J. N. (1984). A simple higher-order theory for laminated composite plates, J. Appl. Mech. 51, pp. 745–752. [17] Shimpi, R. P., Patel, H. G. (2006). A two variable refined plate theory for orthotropic plate analysis, Int J Solids Struct 43(22–23), pp. 6783–6799. [18] Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014). A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation, Int. J. Comput. Method 11(5), 1350077. [19] Abdelaziz, H. H., Atmane, H. A. Mechab, I., Boumia, L., Tounsi, A. and Adda Bedia, E. A. (2011). Static analysis of functionally graded sandwich plates using an efficient and simple refined theory, Chinese J. Aeronaut 24, pp. 434–448. [20] Aiello, M. A. and Ombres, L. (1999). Buckling and vibrations of unsymmetric laminates resting on elastic foundations under in-plane and shear forces, Compos. Struct. 44, pp. 31–41. [21] Draiche, K., Tounsi, A. and Khalfi, Y. (2014), A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass, Steel Compos. Struct., Int. J 17(1), pp. 69-81. [22] Seung-Eock, K., Huu-Tai, T., Jaehong, L. (2009). Buckling analysis of plates using the two variable refined plate theory, Thin-Walled Structures 47, pp. 455–462 [23] Whitney, J. M. and Pagano, N. J. (1970). Shear deformation in heterogeneous anisotropicplates, J. Appl. Mech. 37, pp. 1031–1036. [24] Reddy, J. N. (1984). A refined nonlinear theory of plates with transverse shear deformation, Int J Solids Struct 20(9), pp. 881–896. [25] Reddy, J. N. (1997). Mechanics of laminated composite plate: theory and analysis, New York, CRC Press.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=