Issue 47

V. Rizov, Frattura ed Integrità Strutturale, (2047) 468-481; DOI: 10.3221/IGF-ESIS.47.37 474 By substituting of 1 ai y y  and 1 0 z  in (18), one obtains   1 1 1 cos 0 i m i i i ai i i i y               (19) where 1 i i d i m i E H   (20) 1 i i f i m i E H   (21)   1 1 1 2 i i i y y      (22)   1 1 1 1 2 i i i i y y y      (23) Further, by substituting of 1 ai y y  and 1 0 z  in the first derivative of (18) with respect to 1 y , one arrives at   1 1 2 1 1 2 1 sin( ) cos 0 i i i m m m i i i ai i i i i i ai i i i i i y y m                        (24) Similarly, by substituting of 1 ai y y  and 1 0 z  in the first derivative of (18) with respect to 1 z , one obtains   1 1 1 3 1 3 1 cos( ) cos i i i m m di f ai i i i i i ai i i i i i E E y y m                       (25) Further, by substituting of 1 ai y y  and 1 0 z  in the second derivatives of (18) with respect to 1 y , 1 y and 1 z , and 1 z , one arrives at     1 1 1 2 4 1 1 2 1 1 2 1 1 2 2 1 4 2 1 1 2 cos( ) sin( ) sin( ) 1 1 cos 2 cos 0 i i i i i i i i i m m m m m i i i ai i i i i i ai i i i i i i ai i i i i i m m m m i i i ai i i i i i i i ai i i i i i i y y y m m m y y m m                                                                 (26)   1 1 5 1 3 1 2 1 1 3 2 1 5 1 sin( ) sin( ) 1 1 cos i i i i i i i m m f i ai i i i i i ai i i i i i m m m m i i i ai i i i i i i i i i E y y m m y m m                                            , (27)

RkJQdWJsaXNoZXIy MjM0NDE=