Issue 47

M. Peron et alii, Frattura ed Integrità Strutturale, 47 (2019) 425-436; DOI: 10.3221/IGF-ESIS.47.33 436 of the Local Strain Energy Density, Mater. 2017, Vol. 10, Page 1423, 10(12), pp. 1423. DOI: 10.3390/MA10121423. [48] Peron, M., Torgersen, J., Berto, F., Peron, M., Torgersen, J., Berto, F. (2018). A Novel Approach for Assessing the Fatigue Behavior of PEEK in a Physiologically Relevant Environment, Mater. 11, pp. 1923. DOI: 10.3390/MA11101923. [49] Ulery, B.D., Nair, L.S., Laurencin, C.T. (2011). Biomedical Applications of Biodegradable Polymers., J. Polym. Sci. B. Polym. Phys., 49(12), pp. 832–864. DOI: 10.1002/polb.22259. [50] Maitz, M.F. (2015). Applications of synthetic polymers in clinical medicine, Biosurface and Biotribology, 1, pp. 161– 176. DOI: 10.1016/j.bsbt.2015.08.002. [51] Williams, D.F. (2009). On the nature of biomaterials, Biomaterials, 30(30), pp. 5897–5909. DOI: 10.1016/j.biomaterials.2009.07.027. [52] Lendlein, A., Rehahn, M., Buchmeiser, M.R., Haag, R. (2010). Polymers in Biomedicine and Electronics, Macromol. Rapid Commun., 31(17), pp. 1487–1491. DOI: 10.1002/marc.201000426. [53] Williams, D.F., McNamara, A., Turner, R.M. (1987). Potential of polyetheretherketone (PEEK) and carbon-fibre- reinforced PEEK in medical applications, J. Mater. Sci. Lett., 6(2), pp. 188–190. DOI: 10.1007/BF01728981. [54] Platt, D.K., Rapra Technology Limited. (2003). Engineering and high performance plastics market report : a Rapra market report, Rapra Technology Ltd. [55] Walter, J., Kuhn, S.A., Reichart, R., Kalff, R., Ewald, C. (2010). PEEK cages as a potential alternative in the treatment of cervical spondylodiscitis: a preliminary report on a patient series., Eur. Spine J., 19(6), pp. 1004–1009. DOI: 10.1007/s00586-009-1265-5. [56] Schwitalla, A., Müller, W.-D. (2013). PEEK Dental Implants: A Review of the Literature, J. Oral Implantol., 39(6), pp. 743–749. DOI: 10.1563/AAID-JOI-D-11-00002. [57] Rahmitasari, F., Ishida, Y., Kurahashi, K., Matsuda, T., Watanabe, M., Ichikawa, T. (2017). PEEK with Reinforced Materials and Modifications for Dental Implant Applications., Dent. J., 5(4). DOI: 10.3390/dj5040035. [58] Sagomonyants, K.B., Jarman-Smith, M.L., Devine, J.N., Aronow, M.S., Gronowicz, G.A. (2008). The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium, Biomaterials, 29(11), pp. 1563–1572. DOI: 10.1016/j.biomaterials.2007.12.001. [59] Lee, W.-T., Koak, J.-Y., Lim, Y.-J., Kim, S.-K., Kwon, H.-B., Kim, M.-J. (2012). Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants, J. Biomed. Mater. Res. Part B Appl. Biomater., 100B(4), pp. 1044–1052. DOI: 10.1002/jbm.b.32669. [60] Sobieraj, M.C., Kurtz, S.M., Rimnac, C.M. (2009). Notch sensitivity of PEEK in monotonic tension., Biomaterials, 30(33), pp. 6485–6494. DOI: 10.1016/j.biomaterials.2009.08.020. [61] Sobieraj, M.C., Murphy, J.E., Brinkman, J.G., Kurtz, S.M., Rimnac, C.M. (2010). Notched fatigue behavior of PEEK, Biomaterials, 31(35), pp. 9156–9162. DOI: 10.1016/j.biomaterials.2010.08.032. [62] Dowling, N.E. (2007). Mechanical behavior of materials : engineering methods for deformation, fracture and fatigue, Upper Saddle River, NJ, Pearson Prentice Hall. [63] Lazzarin, P., Zambardi, R. (2001). A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches, Int. J. Fract., 112(3), pp. 275–298. DOI: 10.1023/A:1013595930617. [64] Berto, F., Lazzarin, P. (2014). Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches, Mater. Sci. Eng. R, 75(1), pp. 1–48. DOI: 10.1016/j.mser.2013.11.001. [65] Seweryn, A. (1994). Brittle fracture criterion for structures with sharp notches, Eng. Fract. Mech., 47(5), pp. 673–681. DOI: 10.1016/0013-7944(94)90158-9. [66] Fuentes, J., Cicero, S., Berto, F., Torabi, A., Madrazo, V., Azizi, P. (2018). Estimation of Fracture Loads in AL7075- T651 Notched Specimens Using the Equivalent Material Concept Combined with the Strain Energy Density Criterion and with the Theory of Critical Distances, Metals (Basel) 8(2), pp. 87. DOI: 10.3390/met8020087. [67] Beltrami, E., E. (1885). Sulle condizioni di resistenza dei corpi elastici, Nuovo Cim., 18(1), pp. 145–155. DOI: 10.1007/BF02824697. [68] Berto, F., Gallo, P., Razavi, S.M.J., Ayatollahi, M.R. (2017). Fatigue behavior of innovative alloys at elevated temperature, Procedia Struct. Integr., 3, pp. 162–167. DOI: 10.1016/j.prostr.2017.04.029. [69] Albérola, N.D., Mélé, P., Bas, C. (1997). Tensile mechanical properties of PEEK films over a wide range of strain rates. II, J. Appl. Polym. Sci., 64(6), pp. 1053–1059. DOI: 10.1002/(SICI)1097-4628(19970509)64:6<1053::AID-APP3 >3.0.CO; 2-K.

RkJQdWJsaXNoZXIy MjM0NDE=