Issue 47

P. Gallo et alii, Frattura ed Integrità Strutturale, 47 (2019) 408-415; DOI: 10.3221/IGF-ESIS.47.31 415 and Vickers Indenters, J. Am. Ceram. Soc., 75(12), pp. 3299–3304. DOI: 10.1111/j.1151-2916.1992.tb04425.x. [15] Sumigawa, T., Shimada, T., Tanaka, S., Unno, H., Ozaki, N., Ashida, S., Kitamura, T. (2017). Griffith Criterion for Nanoscale Stress Singularity in Brittle Silicon, ACS Nano, 11(6), pp. 6271–6276. DOI: 10.1021/acsnano.7b02493. [16] Ando, T., Li, X., Nakao, S., Kasai, T., Tanaka, H., Shikida, M., Sato, K. (2005). Fracture toughness measurement of thin-film silicon, Fatigue Fract. Eng. Mater. Struct., 28(8), pp. 687–694. DOI: 10.1111/j.1460-2695.2005.00920.x. [17] Li, X., Kasai, T., Nakao, S., Tanaka, H., Ando, T., Shikida, M., Sato, K. (2005). Measurement for fracture toughness of single crystal silicon film with tensile test, Sensors Actuators, A Phys., 119(1), pp. 229–235. DOI: 10.1016/j.sna.2003.10.063. [18] Neuber, H. (1958). Theory of Notch Stresses: Principles for Exact Calculation of Strength with Reference to Structural form and Material, Berlin, Springer Verlag. [19] Peterson, R.E. (1959).Notch Sensitivity. In: Sines, G., Waisman, J.L., (Eds.), Metal Fatigue, New Yorl, McGraw-Hill, pp. 293–306. [20] Taylor, D. (2007). The Theory of Critical Distances: A New Perspective in Fracture Mechanics, Oxford. [21] Susmel, L. (2008). The theory of critical distances: a review of its applications in fatigue, Eng. Fract. Mech., 75(7), pp. 1706–1724. DOI: 10.1016/j.engfracmech.2006.12.004. [22] Susmel, L., Taylor, D. (2008). On the use of the Theory of Critical Distances to predict static failures in ductile metallic materials containing different geometrical features, Eng. Fract. Mech., 75(15), pp. 4410–4421. DOI: 10.1016/j.engfracmech.2008.04.018. [23] Susmel, L., Taylor, D. (2010). The Theory of Critical Distances as an alternative experimental strategy for the determination of KIc and ΔKth, Eng. Fract. Mech., 77(9), pp. 1492–1501. DOI: 10.1016/j.engfracmech.2010.04.016. [24] Taylor, D. (2008). The theory of critical distances, Eng. Fract. Mech., 75(7), pp. 1696–1705. DOI: 10.1016/j.engfracmech.2007.04.007. [25] Gallo, P., Sumigawa, T., Kitamura, T., Berto, F. (2018). Static assessment of nanoscale notched silicon beams using the averaged strain energy density method, Theor. Appl. Fract. Mech., 95, pp. 261–269. DOI: 10.1016/j.tafmec.2018.03.007. [26] Bažant, Z.P. (2005). Scaling of Structural Strength, Elsevier. [27] Bažant, Z.P. (1999). Size effect on structural strength: a review, Arch. Appl. Mech., Ingenieur Arch., 69(9–10), pp. 703–725. DOI: 10.1007/s004190050252. [28] Kamigaito, O. (1988). Ideal fracture stress of brittle material having no defect, J. Mater. Sci. Lett., 7(5), pp. 529–531. DOI: 10.1007/BF01730717. [29] Pugno, N.M., Ruoff, R.S. (2004). Quantized fracture mechanics, Philos. Mag., 84(27), pp. 2829–2845. DOI: 10.1080/14786430412331280382. [30] Taylor, D. (2017). The Theory of Critical Distances: A link to micromechanisms, Theor. Appl. Fract. Mech., 90, pp. 228–233. DOI: 10.1016/j.tafmec.2017.05.018. [31] Campagnolo, A., Berto, F. (2017). Some recent criteria for brittle fracture assessment under mode II loading, Eng. Solid Mech., pp. 31–38. DOI: 10.5267/j.esm.2016.10.002. [32] Carpinteri, A., Cornetti, P., Pugno, N., Sapora, A., Taylor, D. (2008). A finite fracture mechanics approach to structures with sharp V-notches, Eng. Fract. Mech., 75(7), pp. 1736–1752. DOI: 10.1016/j.engfracmech.2007.04.010. [33] Huang, K., Shimada, T., Ozaki, N., Hagiwara, Y., Sumigawa, T., Guo, L., Kitamura, T. (2017). A unified and universal Griffith-based criterion for brittle fracture, Int. J. Solids Struct., 128, pp. 67–72. DOI: 10.1016/j.ijsolstr.2017.08.018. [34] Kitamura, T., Sumigawa, T., Shimada, T., Lich, L. Van. (2018). Challenge toward nanometer scale fracture mechanics, Eng. Fract. Mech., 187, pp. 33–44. DOI: 10.1016/j.engfracmech.2017.10.009. [35] Rice, J.R. (1992). Dislocation nucleation from a crack tip: An analysis based on the Peierls concept, J. Mech. Phys. Solids, 40(2), pp. 239–271. DOI: 10.1016/S0022-5096(05)80012-2.

RkJQdWJsaXNoZXIy MjM0NDE=