Issue 47
A. Spagnoli et alii, Frattura ed Integrità Strutturale, 47 (2019) 401-407; DOI: 10.3221/IGF-ESIS.47.30 407 R EFERENCES [1] Kitagawa, H., Yuuki, R., and Ohira, T. (1975). Crack-morphological aspects in fracture mechanics, Eng. Fract. Mech., 7(3), pp. 515–529, DOI: 10.1016/0013-7944(75)90052-1. [2] Suresh, S. (1983). Crack deflection: Implications for the growth of long and short fatigue cracks, Metall. Trans. A, 14(11), pp. 2375–2385, DOI: 10.1007/BF02663313. [3] Evans, A.G. and Hutchinson, J.W. (1989). Effects of non-planarity on the mixed mode fracture resistance of bimaterial interfaces, Acta Metall., 37(3), pp. 909–916, DOI: 10.1016/0001-6160(89)90017-5. [4] Shah, S.P., Swartz, S.E., and Ouyang, C. (1995).Fracture Mechanics and Compressive Failure. Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock and Other Quasi-Brittle Materials, Wiley, pp. [5] Brighenti, R., Carpinteri, A., and Spagnoli, A. (2014). Influence of material microvoids and heterogeneities on fatigue crack propagation, Acta Mech., 225(11), pp. 3123–3135, DOI: 10.1007/s00707-014-1111-7. [6] Bian, L.-C., Fawaz, Z., and Behdinan, K. (2006). A mixed mode crack growth model taking account of fracture surface contact and friction, Int. J. Fract., 139(1), pp. 39–58, DOI: 10.1007/s10704-006-6633-0. [7] Ballarini, R. and Plesha, M.E. (1987). The effects of crack surface friction and roughness on crack tip stress fields, Int. J. Fract., 34(3), pp. 195–207, DOI: 10.1007/BF00019717. [8] Plesha, M.E. (1987). Constitutive models for rock discontinuities with dilatancy and surface degradation, Int. J. Numer. Anal. Methods Geomech., 11(4), pp. 345–362, DOI: 10.1002/nag.1610110404. [9] Tong, J., Yates, J.R., and Brown, M.W. (1995). A model for sliding mode crack closure part II: mixed mode I and II loading and application, Eng. Fract. Mech., 52(4), pp. 613–623, DOI: 10.1016/0013-7944(95)00045-W. [10] Carpinteri, A., Spagnoli, A., Terzano, M., and Vantadori, S. (2017). Fracture toughness of rough and frictional cracks emanating from a re-entrant corner, Frat. Ed Integrita Strutt., 41, pp. 175–182, DOI: 10.3221/IGF-ESIS.41.24. [11] Hills, D.A., Kelly, P.A., Dai, D.N., and Korsunsky, A.M. (2013). Solution of Crack Problems: The Distributed Dislocation Technique, Springer Netherlands. [12] Spagnoli, A., Carpinteri, A., and Terzano, M. (2018). Near-tip stress fields of rough and frictional cracks under mixed- mode loading, Fatigue Fract. Eng. Mater. Struct., 41(4), pp. 2099–2109, DOI: 10.1111/ffe.12765. [13] Carpinteri, A. (1994). Fractal nature of material microstructure and size effects on apparent mechanical properties, Mech. Mater., 18(2), pp. 89–101, DOI: 10.1016/0167-6636(94)00008-5. [14] Carpinteri, A. and Spagnoli, A. (2004). A fractal analysis of size effect on fatigue crack growth, Int. J. Fatigue, 26(2), pp. 125–133, DOI: 10.1016/S0142-1123(03)00142-7. [15] Carpinteri, A., Spagnoli, A., Vantadori, S., and Viappiani, D. (2008). Influence of the crack morphology on the fatigue crack growth rate: A continuously-kinked crack model based on fractals, Eng. Fract. Mech., 75, pp. 579–589, DOI: 10.1016/j.engfracmech.2007.05.007. [16] Carpinteri, A., Spagnoli, A., and Vantadori, S. (2010). A multifractal analysis of fatigue crack growth and its application to concrete, Eng. Fract. Mech., 77(6), pp. 974–984, DOI: 10.1016/j.engfracmech.2010.01.019. [17] Cordisco, F.A., Zavattieri, P.D., Hector, L.G., and Carlson, B.E. (2016). Mode I fracture along adhesively bonded sinusoidal interfaces, Int. J. Solids Struct., 83, pp. 45–64, DOI: 10.1016/j.ijsolstr.2015.12.028. [18] Shah, S.P. and Ouyang, C. (1994). Fracture mechanics for failure of concrete, Annu. Rev. Mater. Sci., 24(1), pp. 293– 320. [19] Xie, H.B., Jiang, Z.Y., and Yuen, W.Y.D. (2011). Analysis of friction and surface roughness effects on edge crack evolution of thin strip during cold rolling, Tribol. Int., 44(9), pp. 971–979, DOI: 10.1016/j.triboint.2011.03.029.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=