Issue 47
E. Grande et alii, Frattura ed Integrità Strutturale, 47 (2019) 321-333; DOI: 10.3221/IGF-ESIS.47.24 333 R EFERENCES [1] D’Ambra, C., Lignola, G.P., Prota, A., Sacco, E., Fabbrocino, F. (2018). Experimental performance of FRCM retrofit on out-of-plane behaviour of clay brick walls, Compos. Part B Eng., 148, pp. 198-206. DOI: 10.1016/j.compositesb.2018.04.062. [2] D’Ambrisi, A., Feo, L., Focacci, F. (2012). Bond-slip relations for PBO-FRCM materials externally bonded to concrete, Compos. Part B Eng., 43(8), pp. 2938-2949. DOI: 10.1016/j.compositesb.2012.06.002. [3] D’Ambrisi, A., Feo, L., Focacci, F. (2013). Experimental analysis on bond between PBO-FRCM strengthening materials and concrete, Compos. Part B Eng., 44, pp. 524-532. DOI: 10.1016/j.compositesb.2012.03.011. [4] D’Antino, T., Sneed, L.H., Carloni, C., Pellegrino, C. (2015). Influence of the substrate characteristics on the bond behavior of PBO FRCM-concrete joints, Constr. Build. Mater., 101(1), pp. 838-850. DOI: 10.1016/j.conbuildmat.2015.10.045. [5] de Felice, G., De Santis, S., Garmendia, L., Ghiassi, B., Larrinaga, P., Lourenço, P.B., Oliveira, D. V., Paolacci, F., Papanicolaou, C.G. (2014). Mortar-based systems for externally bonded strengthening of masonry, Mater. Struct. Constr., 47(2), pp. 2021-2037. DOI: 10.1617/s11527-014-0360-1. [6] Grande, E., Imbimbo, M., Sacco, E. (2015). Investigation on the bond behavior of clay bricks reinforced with SRP and SRG strengthening systems, Mater. Struct. Constr., 48(11), pp. 3755-3770. DOI: 10.1617/s11527-014-0437-x. [7] Marcari, G., Basili, M., Vestroni, F. (2017). Experimental investigation of tuff masonry panels reinforced with surface bonded basalt textile-reinforced mortar, Compos. Part B Eng., 108, pp. 131-142. DOI: 10.1016/j.compositesb.2016.09.094. [8] Grande, E., Imbimbo, M., Sacco, E. (2013). Modeling and numerical analysis of the bond behavior of masonry elements strengthened with SRP/SRG, Compos. Part B Eng., 55, pp. 128–38. [9] Grande, E., Imbimbo, M., Sacco, E. (2017). Local bond behavior of frcm strengthening systems: Some considerations about modeling and response, 747 KEM, pp. 101-107. [10] Grande, E., Milani, G. (2018). Interface modeling approach for the study of the bond behavior of FRCM strengthening systems, Compos. Part B Eng., 141, pp. 221-233. DOI: 10.1016/j.compositesb.2017.12.052. [11] Carbone, I. (2010). Delaminazione di compositi a matrice cementizia su supporti murari. Università degli Studi Roma Tre. [12] Faella, C., Martinelli, E., Paciello, S., Perri, F. (2009).Composite materials for masonry structures: the adhesion issue. mechanics of masonry structures strengthened with composite materials, In: Proc. of 3rd Conf. on Mechanics of masonry structures strengthened with composite materials: modeling, testing, design, control – MuRiCo3, Venice (Italy), pp. 266-273. [13] Carozzi, F.G., Milani, G., Poggi, C. (2014). Mechanical properties and numerical modeling of Fabric Reinforced Cementitious Matrix (FRCM) systems for strengthening of masonry structures, Compos. Struct., 107, pp. 711-725. DOI: 10.1016/j.compstruct.2013.08.026. [14] Milani, G., Lourenço, P.B. (2012). 3D non-linear behavior of masonry arch bridges, Comput. Struct., 110, pp. 133- 150. DOI: 10.1016/j.compstruc.2012.07.008. [15] Milani, G., Tralli, A. (2012). A simple meso-macro model based on SQP for the non-linear analysis of masonry double curvature structures, Int. J. Solids Struct., 49(5), pp. 808-834. DOI: 10.1016/j.ijsolstr.2011.12.001. [16] Grande, E., Imbimbo, M., Sacco, E. (2018). Numerical investigation on the bond behavior of FRCM strengthening systems, Compos. Part B Eng., 145, pp. 240-251. DOI: 10.1016/j.compositesb.2018.03.010.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=