Issue 47

L. Marsavina et al., Frattura ed Integrità Strutturale, 47 (2019) 266-276; DOI: 10.3221/IGF-ESIS.47.20 275 [6] Kulman, S., Boyko L., Antsyferova, A. (2015) Bending strength (modulus of rupture) and modulus of elasticity of MDF different density at various temperature, Annals of Warsaw University of Life Sciences - Forestry and Wood Technology, 91, pp. 101-106. [7] Stanzl-Tschegg, S.E., Navi P. (2009). Fracture behaviour of wood and its composites. A review. Holzforschung 63, pp. 139–149. [8] Ilcewicz, L.B. (1979). On the phenomena of fracture in particleboard, Oregon State University. [9] Veigel, S., Rathke, J., Weigl, M., Gindl-Altmutter, W. (2012). Particle Board and Oriented Strand Board Prepared with Nanocellulose-Reinforced Adhesive, Journal of Nanomaterials, Article ID 158503, 1-8. [10] Marsavina, L., Pop, O., Linul, E. (2018). Mixed mode fracture toughness of particleboard, Proceedia Stuctural Integrity, 9, pp. 47-54. [11] Matsumoto, N., Nairn, J.A. (2007). Fracture Toughness of MDF and other Materials with Fiber Bridging, Proc. of 22nd Ann. Tech. Conf. of the Amer. Soc. of Composites, Sept. 17-19, Seattle, WA, pp. 1-19. [12] Niemz, P., Diener, M., and Pöhler, E. (1997). Untersuchungen zur Ermittlung der Bruchzähigkeit an MDF-Platten, Holz als Roh- und Werkstoff, 55, pp. 327-330. [13] Yoshihara, H. (2010) Mode I and mode II initiation fracture toughness and resistance curve of medium density fiberboard measured by double cantilever beam and three-point bend end-notched flexure tests, Engineering Fracture Mechanics, 77, pp. 2537–2549 [14] Sneddon, IN., (1946) The distribution of stress in the neighbourhood of a crack in an elastic solid, Proc R Soc Lond, Ser A Math Phys Sci 187, 229–260. [15] Irwin, GR. (1957) Analysis of stresses and strains near the end of a crack traversing a plate, J Appl Mech, 24, 361–364. [16] Erdogan, F. (1962) On the stress distribution in plates with collinear cuts under arbitrary loads, In: Proceedings of the fourth US national congress of applied mechanics, 1, 547–574. [17] Dubois, F., Chazal, C. and Petit, C. (2002) Viscoelastic crack growth process in wood timbers: an approach by the finite element method for mode I fracture, Int J Fract, 113, 367–388. [18] Dubois, F. and Petit, C. (2005) Modeling of the crack growth initiation in viscoelastic media by the Gθ integral, Eng Fract Mech, 72, 2821–2836. [19] Pop. O., Meite, M., Dubois, F. and Absi, J. (2011) Identification algorithm for fracture parameters by combining DIC and FEM approaches, International Journal of Fracture, 170, 101-114. [20] Méité, M., Pop, O., Dubois F. and Absi, J. (2013) Characterization of mixed-mode fracture based on a complementary analysis by means of full-field optical and finite element approaches, International Journal of Fracture, 180, 41-52. [21] Cherepanov, G. (1967) Crack propagation in continuous media, J Appl Mech, 31, 476–488. [22] Budiansky, E. and Rice, J. (1973) Conservation laws and energy release rates, J Appl Mech, 40, 201–203. [23] Rice, J. (1968) A path independent integral and the approximate analysis of strain concentration by notched and cracks, J Appl Mech, 35, 379–386. [24] Pop, O., Dubois, F. and Absi, J. (2013) J-integral evaluation in cracked wood specimen using the mark tracking method, Wood Science and Technology, 47 (2), 257-267. [25] Jamaaoui, A., Pop, O., Dubois, F. and Costa, G. (2017) Wedge Splitting Test on Douglas genotypes using an integrated mixed-mode approach, Theoretical and Applied Fracture Mechanics, 91, 44-51. [26] Post, D. (1993) Moire interferometry. In: Kobayashi AS, editor. Handbook on experimental mechanics, New York. [27] Orteu, JJ. (2009) 3-D computer vision in experimental mechanics, Optics and Lasers in Engineering, 47:282–291. [28] Wells, A. and Post, D. (1958) The dynamic stress distribution surrounding a running crack—a photoelastic analysis, Proc Soc Exp Stress Anal, 16, 69–92 [29] Sutton, M.A., Wolters, W.J., Peters, W.H., Ranson, W.F. and McNeil, S.R. (1983) Determination of Displacements Using an Improved Digital Correlation Method, Image and Vision Computating, 1(3), 133-139. [30] Sutton, M.A., Cheng, M.Q., Peters, W.H., Chao, Y.J. and McNeill, S.R. (1986) Application of an Optimized Digital Correlation Method to Planar Deformation Analysis, Image and Vision Computing, 4(3), 143-151 [31] Sutton, M.A., Yan, J.H., Tiwari, V., Schreier, H.W. and Orteu, J.J. (2008) The effect of out-of-plane motion on 2D and 3D digital image correlation measurements, Optics and Lasers in Engineering, 46(10), 746-757 . [32] Brémand, F., Dupré, J. and Lagarde, A. (1995) Mesure des déformations sans contact par analyse d’images, Photomécanique 95 – Etude du comportement des matériaux et des structures, Ed. Eyrolles, 171-177. [33] Bretagne, N., Valle, V. and Dupre, J.C. (2005) Development of the marks tracking technique for strain field and volume variation measurements, NDT&E International, 38, 290–298. [34] Dupré, J.C., Doumalin, P., Belrhiti, Y., Khlifi, I., Pop, O. and Huger, M. (2018) Detection of cracks in refractory materials by an enhanced digital image correlation technique, Journal of Materials Science, 53 (2), 977-993.

RkJQdWJsaXNoZXIy MjM0NDE=