Issue 47

E. Mele et alii, Frattura ed Integrità Strutturale, 47 (2019) 186-208; DOI: 10.3221/IGF-ESIS.47.15 208 [9] Fraldi, M., Cowin, S.C. (2004). Inhomogeneous elastostatic problem solutions constructed from stress-associated homogeneous solutions, J. Mech. Phys. Solids, 52, pp. 2207-2233. [10] Lakes, R. (1993). Materials with structural hierarchy, Nature, 361, pp. 511-515. [11] Voronoi, G. (1908). Nouvelles applications des paramètres continus à la théorie des formes quadratiques, J. für die Reine und Angewandte Mathematik, 133, pp. 97–178. [12] Montuori, G.M., Fadda, M., Perrella, G., Mele, E. (2015). Hexagrid – hexagonal tube structures for tall buildings: patterns, modeling, and design, Struct. Des. Tall Spec., 24, pp. 895-940. [13] Kwan, A.K.H. (1994). Simple method for approximate analysis of framed tube structures, J Struct Eng 120(4), pp. 1221-1239. [14] Hashin, Z. and Shtrikman, S. (1996). A variational approach to the theory of elastic behaviour of multiphasematerials, J. Mech. Phys. Solid, 11, pp. 127–140. [15] Burry, J. and Burry, M. (2010). The New Mathematics of Architecture. New York, Thames & Hudson. [16] Aurenhammer, F. (1991). Voronoi Diagrams — A Survey of a Fundamental Geometric Data Structure, ACM Computing Surveys (CSUR), 23(3), pp. 345-405. [17] Wigner, E. and Seitz, F. (1993). On the constitution of metallic sodium, Phys. Res. 43, pp. 804-810. [18] Bock, M., Tyagi, A.K., Kreft, J.U., Alt, W. (2010). Generalized Voronoi tessellation as a model of two- dimensional cell tissue dynamics, Bull. Math. Biol. 72, pp. 1696-1731. [19] Silva, M.J. and Gibson, L.J. (1997). The effects of non-periodic microstructure and defects on the compressive strength of twodimensional cellular solids, Int. J. Mech. Sci., 39, pp. 549–563. [20] Vajjhala, S., Kraynik, A.M., Gibson, L.J. (2000). A cellular solid model for modulus reduction due to resorption of trabeculae in bone, J. Biomech. Eng. – T. ASME, 122, pp. 511–515. [21] Hahn, C. (2010). eVolo Skyscraper Competition entry “Use Arrangement”. Available at http://www.evolo.us/architecture/a-city-within-a-skyscraper-for-battery-park/. [22] Beghini, L.L., Beghini, A., Katz, N., Baker, W.F., Paulino, G.H. (2014). Connecting architecture and engineering through structural topology optimization, Eng. Struct. 59, pp. 716–726. [23] LAVA. Bionic Tower. (2007). Available at: http://www.l-a-v-a.net/projects/bionic-tower. [24] Zheng, Z., Yu, I., Li, J. (2005). Dynamic crushing of 2D cellular structures: A finite element study, Int. J. Impact Eng. 32, pp. 650-664. [25] Fazekas, A., Dendievel, R., Salvo, L., Bréchet, Y. (2002). Effect of microstructural topology upon the stiffness and strength of 2D cellular structures, Int. J. Mech. Sci., 44, pp. 2047-2066. [26] Zhu, H.X., Hobdell, J.R., Windle, A.H. (2001). Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs. J. Mech. Phys. Solids, 49, pp. 857-870. [27] Silva, M.J., Gibson, L.J., Hayes, W.C. (1995). The effects of non-periodic microstructure on the elastic proprieties of two-dimensional cellular solids, Int. J. Mech. Sci. 37, pp. 1161-77. [28] Li, K., Gao, X.L., Subhash, G. (2005). Effects of cell shape and cell wall thickness variations on the elastic properties of two-dimensional cellular solids, Int. J. Solids Struct, 42, pp. 1777-1795. [29] Li, K., Gao, X.L., Roy, A. (2003). Micromechanics model for three-dimensional open-cell foams using a etrakaidecahedral unit cell and Castigliano’s second theorem, Compos. Sci. and Tech., 63, pp. 1769-1781. [30] deMeijer, J.H.M. (2012). Lateral stiffness of hexagrid structures. Master’s thesis. Eindhoven University of Technology Department of the Built Environment Structural Design. [31] Nemat-Nasser, S., Hori, M. (1999). Micromechanics: Overall Properties of Heterogeneous Materials, North-Holland Elsevier, 2nd Edition. [32] Hohe, J., Beckman. (2012). Probabilistic homogenization of hexagonal honeycombs with perturbed microstructure, Mech. Mater., 49, pp. 13-29. [33] Fu, X.Y., Gao, Y., Zhou, Y., Yang, X. (2012). Structural Design of Sino Steel International Plaza, Proc. of 9th CTBUH World Congress, Shanghai. [34] Mele, E., Simeone, A., Tomei, V. (2018). Efficiency vs. Irregularity in non-conventional structural patterns: the case of tall buildings, Proc. of the IASS Symposium Creativity in Structural Design. July 16-20, MIT, Boston, USA. [35] Tomei, V., Imbimbo, M., Mele, E. Optimization of structural patterns for tall buildings: the case of diagrid, Eng. Struct., 171, pp. 280-297.

RkJQdWJsaXNoZXIy MjM0NDE=