Issue 46
A. Deliou et alii, Frattura ed Integrità Strutturale, 46 (2018) 306-318; DOI: 10.3221/IGF-ESIS.46.28 317 [24] Hejazi, D., Haq, A.J., Yazdipour, N., Dunne, D.P., Calka, A, Barbaro, F., Pereloma, E.V.(2012). Effect of manganese content and microstructure on the susceptibility of X70 pipeline steel to hydrogen cracking, Materials Science and Engineering A, 551, pp.40– 49. DOI: 10.1016/j.msea.2012.04.076. [25] Nanninga, N., Slifka, A. Levy, Y. and White, C. (2010). A review of fatigue crack growth for pipeline steels exposed to hydrogen, Journal of research of the national institute of standards and technology, 115(6), pp.437-452. DOI: 10.6028/jres.115.030. [26] Zhong, Y., Shan, Y., Xiao, F. and Yang, K. (2005). Effect of toughness on low cycle fatigue behavior of pipeline steels, Materials Letters, 59, pp.1780– 1784. DOI: 10.1016/j.matlet.2005.01.066. [27] Maamache, B., (2017). Structural and mechanical behavior of successive weld bead repairs in HSLA steel, Ph.D. Dissertation, University of Blida. [28] Fatoba, O. and Akid, R. (2014). Low cycle fatigue behavior of API 5L X65 pipeline steel at room temperature, Procedia Engineering, 74, pp.279 – 286. Doi: 10.1016/j.proeng.2014.06.263. [29] Neves, M. A. (2005). Fatigue crack propagation of longitudinal welded steel tubes, grade API 5L X70, Ph.D. Dissertation, University of Federal University of Rio de Janeiro. [30] Kim, Y. P. Kim, C. M., Kim, W. S. and Shin, K. S. (2007). Fatigue Crack Growth Behavior in Girth Weld of Natural Gas Transmission Pipelines, Key Engineering Materials, 345-346, pp. 303-306. DOI: 10.4028 /www.scientific.net/KEM.345-346.303. [31] Hadjoui, F., Benachour, M. and Benguediab, M. (2012). Fatigue Crack Growth on Double Butt Weld with Toe Crack of Pipelines Steel, Materials Sciences and Applications, 3, pp.596-599. DOI: 10.4236/msa.2012.39085. [32] Maachou, S. Benguediab, M., Mazari, M. Ranganathan, N. (2014). Fatigue crack propagation under variable amplitude loading amplitude loading analyses based on plastic energy approach, Materials Engineering, 21, 2014, pp.68-79. Available online: http://fstroj.uniza.sk/journal-mi/PDF/2014/11-2014.pdf [33] Association de recherche sur les structures métalliques ARSEM -Guide pratique sur les ouvrages en mer, assemblage tubulaire soudé (1985), Edition TECHNIP, Paris. [34] Carboni, A, Pigani, A., Paul, S. K. and Megahed, G.M. (2008). Casting and rolling of API X 70 grades for arctic applications in a thin slab rolling plant, Millennium steel, pp.131-136. [35] Bulger, J. T., Lu, B. T. and Luo, J. L. (2006). Microstructural effect on near-neutral pH stress corrosion cracking resistance of pipeline steels, J Mater Sci., 41, pp. 5001–5005. DOI: 10.1007/s10853-006-0131-7 [36] Kumar, S. Shukla, S. K., De, S. K., Saxena, A., Jha, B. K , Mishra, B. Verma, A. and Mallik, S.( 2013). API X 70 Grade HR coils for ERW pipes, International Journal of Metallurgical Engineering, 2(2), pp.179-187. Doi:10.5923/j.ijmee.20130202.09. [37] Feng, R., Li, S., Zhu, X. and Ao, Q. (2015). Microstructural characterization and formation mechanism of abnormal segregation band of hot rolled ferrite/pearlite steel”, Journal of Alloys and Compounds, 646, pp.787-793. DOI: 10.1016/j.jallcom.2015.05.128. [38] Beltrao, M. A. N., Castrodeza, E. M., Filho, F. D.M. and Bastian, F. L. (2005).Fatigue behavior of API Grade 5L X- 65 and X-70 steels welded under variable amplitude loading, Proceedings of COBEM 2005 18th International Congress of Mechanical Engineering , ABCM November 6-11 , Ouro Preto, Brazil. [39] Tassadit, D, (2013). Study of the harmfulness of defects in pipelines under hydrogen environments), Ph.D. Dissertation, University of Tizi ouzou. [40] Hashemi, S.H., Sedghi, S., Soleymani, V. and Mohammadyani, D. (2012).CTOA levels of welded joint in API X70 pipe steel, Engineering Fracture Mechanics, 82, pp. 46–59. DOI: 10.1016/j.engfracmech.2011.11.022. [41] Omale, J.I., Ohaeri, E.G., Tiamiyu, A.A., Eskandari, M., Mostafijur, K.M. and Szpunar, J.A.(2017).Microstructure, texture evolution and mechanical properties of X70 pipeline steel after different thermomechanical treatments, Materials Science & Engineering A, 703, pp. 477-485. DOI: 10.1016/j.msea.2017.07.086. [42] Dowling, J. M., Corbett, J.M. and Kerr, H.W. (1986). Inclusion phases and the nucleation of the acicular ferrite in Submerged Arc Welding in High Strength Low Alloy Steel, Metallurgical transaction A, 17A, pp.1611-1623. [43] Shin, S.Y., Hwang, B., Lee, S., Kim, N. J. and Ahn , S. S.( 2007).Correlation of microstructure and Charpy impact properties Correlation of microstructure and Charpy impact properties in API X70 and X80 line-pipe steels, Materials Science and Engineering A, 458, pp.281–289. DOI: 10.1016/j.msea.2006.12.097. [44] Zhong, Y., Xiao, F., Zhang, J., Shan, Y., Wang, W. and Yang, K. (2006). In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel, Acta Materialia, 54, pp.435–443. DOI: 10.1016/j.jallcom.2015.05.128. [45] Zeghloul, A. and Petit J. (1989).Influence de l’environnement sur la propagation des fissures courtes et longues dans un alliage léger type 7075, Revue Phys. Appl., 24, pp.893-904.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=