Issue 46

A. Deliou et alii, Frattura ed Integrità Strutturale, 46 (2018) 306-318; DOI: 10.3221/IGF-ESIS.46.28 316 DOI: 10.1016/j.engfracmech.2004.11.004. [2] Ferreira, J. A. M. and Branco, C. A. M. (1989). Influence of the radius of curvature at the weld toe in the fatigue strength of fillet welded joints. Int. J. of fatigue, 11, pp. 29-36. DOI: 10.1016/0142-1123(89)90044-3. [3] Janosh, J. J. (1990). Study of the fatigue strength of welded joints at angles (made of steel E 36-4), according to the size of the penetration of welds, in the case of a combined stress of traction and flexion., Ph.D. Dissertation, University of Metz, Metz. [4] Otegui, J. L., H.W. Kerr, D. J. Burns, Mohaupt, U. H. (1998). Fatigue crack initiation from defects at weld toes in steel, Int. J. Pres .Ves. &piping, 38, pp.385-417. DOI: 10.1016/0308-0161 (89)90048-3. [5] Nguyen, N.T. (1990). Advanced modeling fatigue of butt-welded structures”, Ph.D. Dissertation, University of Adelaide, Adelaide. [6] Yee, R., Burns, D. J., Mohaupt, U. H., Bell, R. and Vosikovsky, O. (1990).Thickness effect and fatigue crack development in welded T joints, Journal of Offshore Mechanics and Arctic Engineering, 112, pp. 341-351. DOI: 10.1115/1.2919876. [7] Kambouz, Y.M. Benguediab, B. Bouchouicha and Mazari, M. (2017). Numerical Study of the Mechanical Behavior and Fatigue in a Weld Bead by Friction Stir for a 6082-T6 Aluminum Alloy, Periodica Polytechnica Mechanical Engineering, 61(1), pp. 36-43. DOI: 10.3311/PPme.9212. [8] Srivastava, Y. P. and Garg, S. B. L. (1985). Influence of R on effective stress range on effective stress range ratio and crack growth, Engineering Fracture Mechanics, 22(6), pp. 915-926. DOI: 10.1016/0013-7944 (85)90032-3. [9] Benachour, M., M. Benguediab, Hadjoui, F. and Benachour, N. (2008). Fatigue crack growth of a double fillet weld, Computational Materials Science, 44, pp.489–495. DOI: 10.1016/j.commatsci.2008.04.015. [10] Ngoula, D. T., H. T. Beier and Vormwald, M. (2017). Fatigue crack growth in cruciform welded joints: Influence of residual stresses and of the weld toe geometry, International Journal of Fatigue, 101(Part 2), pp.253-262. DOI: 10.1016/j.ijfatigue.2016.09.020. [11] Al-Haidary, J.T., Wahab, A.A. and. Abdul Salam, E.H. (2006). Fatigue Crack Propagation in Austenitic Stainless Steel Weldments, Metallurgical and Materials Transactions A, 37a, pp. 3206-3214. DOI: 10.1007/BF02586155. [12] Bussu, G. and Irving, P.E. (2003).The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351aluminium joints, International Journal of Fatigue, 25, pp.77–88. DOI: 10.1016/S0142-1123(02)00038-5. [13] Chattopadhyay, A., Glinka, J., EL- Zine, G. M., Qian, J. and Formas, R. (2011). Stress analysis and fatigue of welded structures, welding in the world, 50(7&8), pp. 1- 20. DOI: 10.1007/BF03321326. [14] Chrysanthopoulos, M.K. and Righiniotis, T.D. (2006). Fatigue reliability of welded steel structures, Journal of Constructional Steel Research, 62, 2006, pp.1199–1209. DOI: 10.1016/j.jcsr.2006.06.007. [15] Kainuma, S. and Mori, T. (2008). A study on fatigue crack initiation point of load-carrying fillet welded cruciform joints, International Journal of Fatigue, 30, pp.1669–1677. DOI: 10.1016/j.ijfatigue.2007.11.003. [16] Mann, T., Tveiten, B. W. and Harkeegard, G. (2006). Fatigue crack growth analysis of welded Aluminium RHS T- joints with manipulated residual stress level, Fatigue Fract Engng Mater Struct, 29, pp. 113–122. DOI: 10.1111/j.1460-2695.2006.00970.x. [17] Richards, C.E. and Lindley, T.C. (1972). The influence of stress intensity and microstructure in fatigue crack propagation in ferritic materials, Engineering Fracture Mechanics, 4, 1972, pp. 951-978. DOI: 10.1016/0013-7944(72)90028-8. [18] Trudel, A., Sabourin, M., Levesque, M. and Brochu, M. (2014). Fatigue crack growth in the heat affected zone of a hydraulic turbine runner weld, International Journal of Fatigue, 66, pp.39-46 . DOI: 10.1016/j.ijfatigue.2014.03.006. [19] Tsay, L.W., Liu, Y.C, Young, M.C. and Lin, D. Y. (2004).Fatigue crack growth of AISI 304 stainless steel welds in air and hydrogen, Materials Science and Engineering A, 374, pp.204-210. DOI: 10.1007/BF02586155. [20] Tveiten, B. W., Fjeldstad, A., Harkegard, G., Myhr, O. R. and Bjorneklett, B. ( 2006).Fatigue life enhancement of aluminium joints through mechanical and thermal prestressing, International Journal of Fatigue, 28, pp.1667–1676. DOI: 10.1016/j.ijfatigue.2006.01.006. [21] Ural, A., Krishnan, V. R. and Papoulia, K. D. (2009). A cohesive zone model for fatigue crack growth allowing for crack retardation, International Journal of Solids and Structures, 46, pp. 2453–2462. DOI: 10.1016/j.ijsolstr.2009.01.031. [22] Bordbar, S., Alizadeh, M. and Hashemi, S. H. (2013). Effects of microstructure alteration on corrosion behavior of welded joint in API X70 pipeline steel, Materials and Design, 45, pp. 597-604. DOI: 10.1016/j.matdes.2012.09.051. [23] Hwang, B., Kim, Y. G, Lee, S., Kim, Y. M., Kim, N. J. and Yoo, J. Y. (2005). Effective grain size and charpy impact properties of high-toughness X70 pipeline steels”, Metallurgical and materials transactions A, 36A, pp. 2107-2114.

RkJQdWJsaXNoZXIy MjM0NDE=