Issue 46
A. Maione et alii, Frattura ed Integrità Strutturale, 46 (2018) 240-251; DOI: 10.3221/IGF-ESIS.46.22 250 [2] Lagomarsino, S. and Cattari, S. (2015). PERPETUATE guidelines for seismic performance-based assessment of cultural heritage masonry structures, B. Earthq. Eng., 13(1), pp. 13-47. DOI: 10.1007/s10518-014-9674-1 [3] Cantini, L., Bonavita, A., Parisi, M.A. and Tardini, C. (2016). Historical analysis and diagnostic investigations in the knowledge acquisition path for architectural heritage, Proc. 10 th International Conference on Structural Analysis of Historical Constructions (SAHC 2016), Leuven (Belgium), pp. 166-172. [4] Casapulla, C., Argiento, L.U., Frascadore, R., Maione, A., Prota, A. and Manfredi, G. (2015). Museo di Capodimonte. Report of the ARCUS-MIBACT Project on the “Assessment of the seismic safety of National Museums of Italy”. Application of O.P.C.M. 3274/2003 s.m.i. and of the Directive P.C.M. 12.10.2007”. (in Italian) [5] Casapulla, C., Maione, A. and Argiento, L.U. (2017). Seismic analysis of an existing masonry building according to the multi-level approach of the Italian guidelines on Cultural Heritage, Ing. Sismica-Ital., 34(1), pp. 40-59. [6] Casapulla, C., Argiento, L.U. and Maione, A. (2018). Seismic safety assessment of a masonry building according to Italian Guidelines on Cultural Heritage: simplified mechanical-based approach and pushover analysis, B. Earthq. Eng., 16(7), pp. 2809-2837. DOI: 10.1007/s10518-017-0281-9 [7] Molajoli B. (1961). Il Museo di Capodimonte, Di Mauro Editore, Cava dei Tirreni (SA). (in Italian) [8] Casapulla, C. and Argiento, L.U. (2016). The comparative role of friction in local out-of-plane mechanisms of masonry buildings. Pushover analysis and experimental investigation, Eng. Struct., 126, pp. 158-173. DOI: 10.1016/j.engstruct.2016.07.036. [9] Casapulla, C., Giresini, L. and Lourenço, P.B. (2017). Rocking and kinematic approaches for rigid block analysis of masonry walls: state of the art and recent developments, Buildings, 7(3), art. no. 69. DOI: 10.3d390/buildings7030069. [10] Cannizzaro, F., Pantò, B., Lepidi, M., Caddemi, S. and Caliò, I. (2017). Multi-directional seismic assessment of historical masonry buildings by means of macro-element modelling: application to a building damaged during the L’Aquila earthquake (Italy), Buildings, 7(4), art. no. 106. DOI: 10.3390/buildings7040106. [11] Casapulla, C. and Argiento, L.U. (2018). In-plane frictional resistances in dry block masonry walls and rocking-sliding failure modes revisited and experimentally validated, Compos. Part B-Eng., 132, pp. 197-213. DOI: 10.1016/j.compositesb.2017.09.013. [12] Solarino, F., Giresini, L., Chang, W.S. and Huang, H. (2017). Experimental tests on a dowel-type timber connection and validation of numerical models, Buildings, 7(4), art. no. 116. DOI: 10.3390/buildings7040116. [13] Sassu, M., Giresini, L., Bonannini, E. and Puppio, M.L. (2016). On the use of vibro-compressed units with bio-natural aggregate, Buildings, 6(3), art. no. 40. DOI: 10.3390/buildings6030040. [14] Sassu, M., Stochino, F. and Mistretta, F. (2017). Assessment method for combined structural and energy retrofitting in masonry buildings, Buildings, 7(3), art. no. 71. DOI: 10.3390/buildings7030071. [15] Binda L. and Saisi A. (2009). Application of NDTs to the diagnosis of historic structures, Proc. of 7 th International Symposium on Non-Destructive Testing in Civil Engineering (NDTCE’09), Nantes (France), pp. 1-27. [16] Carlomagno, G.M., Maio, R., Meola, C. and Roberti, N. (2005). Infrared thermography and geophysical techniques in cultural heritage conservation, Quant. Infr. Therm. J., 2(1), pp. 5-24. DOI: 10.3166/qirt.2.5-24. [17] Grinzato, E., Bison, P.G. and Marinetti, S. (2002). Monitoring of ancient buildings by the thermal method, J. Cult. Herit., 3(1), pp. 21-29. DOI: 10.1016/S1296-2074(02)01159-7. [18] Mercuri, F., Zammit, U., Orazi, N., Paoloni, S., Marinelli, M. and Scudieri, F. (2011). Active infrared thermography applied to the investigation of art and historic artefacts, J. Therm. Anal. Calorim., 104(2), pp. 475-485. DOI: 10.1007/s10973-011-1450-8. [19] Conde, B., Ramos, L.F., Oliveira, D.V., Riveiro, B. and Solla, M. (2017). Structural assessment of masonry arch bridges by combination of non-destructive testing techniques and three-dimensional numerical modelling: Application to Vilanova bridge, Eng. Struct., 148, pp. 621-638. DOI: 10.1016/j.engstruct.2017.07.011. [20] Arce, A., Ramos, L.F., Fernandes, F.M., Sánchez-Aparicio, L.J. and Lourenço, P.B. (2018). Integrated structural safety analysis of San Francisco Master Gate in the Fortress of Almeida, Int. J. Archit. Herit., pp. 1-18. DOI: 10.1080/15583058.2017.1370507. [21] Avdelidis, N.P. and Moropoulou, A. (2004). Applications of infrared thermography for the investigation of historic structures, J. Cult. Herit., 5(1), pp.119-127. DOI: 10.1016/j.culher.2003.07.002 [22] Meola, C. (2007). Infrared thermography of masonry structures, Infrared Phys. Techn., 49(3), pp. 228-233. DOI: 10.1016/j.infrared.2006.06.010. [23] Spodek, J. and Rosina, E. (2009). Application of infrared thermography to historic building investigation, J. Archit. Conserv., 15(1), pp. 65-81. DOI: 10.1080/13556207.2009.107850401.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=