Issue 45

L. Zou et alii, Frattura ed Integrità Strutturale, 45 (2018) 53-66; DOI: 10.3221/IGF-ESIS.45.05 59 Figure 4 : Loading mode of T-joint specimen . Material Specimen number Load frequency ( HZ ) max  MPa Cycle numbers when crack ( ×10 6 ) Fracture location note 5A06+5083 1-1 163 75.0 0.4521 weld toe 1-2 174 70.0 0.9885 weld toe Clip holding problem 1-3 171 80.0 0.2257 weld toe 1-4 151 60.0 > 10 without fracture 1-5 150 70.0 2.08 weld toe 1-6 159 60.0 3.3749 weld toe 1-7 163 55.0 > 10 without fracture 1-8 162 60.0 4.3542 weld toe 1-9 159 55.0 > 10 without fracture 1-10 171 60.1 5.7485 weld toe 5A06+5A06 2-1 158 80.0 0.2729 weld toe 2-2 158 70.0 0.7759 weld toe 2-3 159 40.0 8.7281 weld toe 2-4 164 35 > 10 without fracture 2-5 170 37.5 > 10 without fracture Weld toe is not fused 2-6 172 40.0 4.3287 weld toe 2-7 172 37.5 9.3184 weld toe There is a scratch 2 mm around the weld toe 2-8 170 35 > 10 without fracture 2-9 170 37.5 > 10 without fracture 2-10 170 40.0 6.3685 weld toe Table 6 : Three-point bending fatigue test data of T-joints . where max  is computed through Eqn. (7)~(9), which is the maximum bending fatigue stress, M is the maximum bending moment,  is the anti-bending section coefficient, F is the load applied, L S is the distance between pivots, b is the width of the specimen, h is the thickness of the specimen. max M   = (7) 4 FL S M = (8)

RkJQdWJsaXNoZXIy MjM0NDE=