Issue 45
A. Benyahia et alii, Frattura ed Integrità Strutturale, 45 (2018) 135-146; DOI: 10.3221/IGF-ESIS.45.11 146 Materials Joural, 104, N0 5, pp. 535–8. [38] Feng, N., Li, G. and Zang, X. (1990). High-strength and flowing concrete with a zeolitic mineral admixture., Cemet and Concrete Aggregate, 12, pp. 61–69. DOI: 10.1520/CCA10273J. [39] Kaid, N., Cyr., M. and Khelafi, H. (2015). Characterization of an Algerian natural pozzolan for its use in eco-efficient cement. International Journal of Civil Engineering, 13(4A), http: ijce.iust.ac.ir/article-1-974-en.html. DOI: 10.22068/IJCE.13.4.444. [40] Benabed, B., Soualhi, H., Belaidi, A. S. E., Azzouz, L. and Kenai, S. (2016). Effect of limestone powder as a partial replacement of crushed quarry sand on properties of self-compacting repair mortars. Journal of Building Materials and Structures, 1, pp.15-30. [41] Shannag, M J. (2000). High strength concrete containing natural pozzolan and silica fume. Cement and Concrete Composite, 22, pp. 399-406. DOI: 10.1016/S0958-9465(00)00037-8. [42] Bonavetti, V., Donza, H., Rahhal, V. and Irassar, E. (2000). Influence of initial curing on the properties of concrete containing limestone blended cement. Cement and Concrete Research, 30, pp. 703-708. DOI: 10.1016/S0008-8846(00)00217-9. [43] Temiz, H., Kantarcı, F. (2014). Investigation of durability of CEM II B-M mortars and concrete with limestone powder, calcite powder and fly ash, Construction and Building Materials, 68, pp. 517-524. DOI:10.1016/j. conbuildmat.2014.06.078. [44] Lemonis, N., Tsakiridis, P.E, and Katsiotis, N.S., Antiohos, S., Papageorgiou, D., Katsiotis, M.S. and Beazi-Katsioti, M. (2015). Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan. Construction and Building Materials, 81, pp. 130-139. DOI: 10.1016/j.conbuildmat.2015.02.046. [45] Lawrence, P., Cyr, M. and Ringot, E. (2005). Mineral admixtures in mortars effect of type, amount and fineness of fine constituents on compressive strength. Cement and Concrete Research, 35, pp. 1092-1005. DOI: 10.1016/j.cemconres.2004.07.004. [46] Guru, J.J., Sashidhar, C., Ramana, R.I.V., Annie, P. J. (2013). Micro and macrolevel properties of fly ash blended self- compacting concrete. Materials and Design, 46, pp. 696-705. DOI: 10.1016/j.matdes.2012.11.027. [47] Sarıdemir, M. (2013). Effect of silica fume and ground pumice on compressive strength and modulus of elasticity of high strength concrete. Construction and Building Materials, 49, pp. 484-489. DOI: 10.1016/j.conbuildmat.2013.08.091. [48] EN 1504-3 (2006). Products and systems for the protection and repair of concrete structures. Definitions, requirements, quality control and evaluation of conformity. Structural and non-structural repair. [49] Turk, K. (2012). Viscosity and hardened properties of self-compacting mortars with binary and ternary cementitious blends of fly ash and silica fume. Construction and Building Materials, 37, pp. 326-334. DOI:10.1016/j. conbuildmat.2012.07.081. [50] Aliabdo, A. and Elmoaty, M. A. (2012). Experimental investigation on the properties of polymer modified SCC. Construction and Building Materials, 34, pp. 584-592. DOI: 10.1016/j.conbuildmat.2012.02.067. [51] ACI Committee 546. (2004). Concrete repair guide (ACI 546R-04). American Concrete Institute, Farmington.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=