Issue 45

Q.-C. Li et alii, Frattura ed Integrità Strutturale, 45 (2018) 86-99; DOI: 10.3221/IGF-ESIS.45.07 98 [10] Rutqvist, J. and Moridis, GJ. (2007). Numerical Studies on the Geomechanical Stability of Hydrate-Bearing Sediments. SPE Journal, 14(2), pp.267-282. DOI: 10.2118/126129-PA. [11] Klar, A., Uchida, S. Soga, K. and Yamamoto, K. (2013). Explicitly Coupled Thermal Flow Mechanical Formulation for Gas-Hydrate Sediments, SPE Journal, 18(2), pp.196-206. DOI: 10.2118/162859-PA. [12] Pook, Les. (2015). Crack paths and the linear elastic analysis of cracked bodies, Frattura ed Integrità Strutturale, 9, pp.150-159. DOI: 10.3221/IGF-ESIS.34.16. [13] Berto, F., Campagnolo, A. and Pook, L. (2015). Three-dimensional effects on cracked components under anti-plane loading, Frattura ed Integrità Strutturale, 33, pp.17-24. DOI: 10.3221/IGF-ESIS.33.03. [14] Qiu, K. B., Yamamoto, K. Birchwood, R. A. and Chen, Y. R. (2015). Well Integrity Evaluation for Methane Hydrate Production in the Deepwater Nankai Trough, SPE Drilling & Completion, 30(1), SPE-174081-PA. DOI: 10.2118/174081-PA. [15] Ning, F.L., Zhang, K.N. Wu, N.Y. Zhang, L. Li, G. Jiang, G. S. Yu, Y.B. Liu, L. and Qin, Y.H. (2013). Invasion of drilling mud into gas-hydrate-bearing sediments. Part I: effect of drilling mud properties, Geophysical Journal International, 193(3), pp.1370–1384. DOI: 10.1093/gji/ggt015. [16] Ning, F.L, Wu, N.Y. Yu, Y.B. Zhang, K.N. Jiang, G.S. Zhang, L. Sun, J.X. and Zheng, M.M. (2013). Invasion of drilling mud into gas-hydrate-bearing sediments. Part II: Effects of geophysical properties of sediments, Geophysical Journal International, 193(3), pp.1385–1398 . DOI: 10.1093/gji/ggt016. [17] Fereidounpour, A., and Vatani, A. (2015). Designing a Polyacrylate drilling fluid system to improve wellbore stability i n hydrate bearing sediments, Journal of Natural Gas Science and Engineering, 26, pp. 921-926. DOI: 10.1016/j.jngse.2015.06.038. [18] Matsuda, H., Yamakawa, T. Sugai, Y.C. and Sasaki, K. (2016). Gas Production from Offshore Methane Hydrate Layer and Seabed Subsidence by Depressurization Method, Engineering, 8, pp.353-364. DOI: 10.4236/eng.2016.86033. [19] McConnell, D.R., Zhang, Z.J. and Boswell, R. (2012). Review of progress in evaluating gas hydrate drilling hazards, Marine & Petroleum Geology, 34, pp.209-223 . DOI: 10.1016/j.marpetgeo.2012.02.010. [20] Wang, X.J., Lee, M. Collett, T. Yang, S.X. Guo, Y.Q. and Wu, S.G. (2014). Gas hydrate identified in sand-rich inferred sedimentary section using downhole logging and seismic data in Shenhu area, South China Sea, Marine and Petroleum Geology, 51, pp.298-306. DOI: 10.1016/j.marpetgeo.2014.01.002. [21] Su, Z., Moridis, G.J. Zhang, K.N. Yang, R. and Wu, N.Y. (2010). SS-Gas Hydrate: Numerical Investigation of Gas Production Strategy for the Hydrate Deposits in the Shenhu Area, In: Proceding of Offshore Technology Conference, Houston, USA, OTC-20551-MS. DOI: 10.4043/20551-MS. [22] Su, Z., Huang, L. Wu, N.Y. and Yang, S.X. (2013). Effect of thermal stimulation on gas production from hydrate dep osits in Shenhu area of the South China Sea, Science China Earth Sciences, 56(4), pp.601–610. DOI: 10.1007/s11430-013-4587-4. [23] Moridis, G.J. and Reagan, M.T. (2007). Strategies for Gas Production From Oceanic Class 3 Hydrate Accumulations, In: Proceding of Offshore Technology Conference, Houston, USA, OTC-18865-MS. DOI: 10.4043/18865-MS. [24] Khanna, A., Luong, H. Kotousov, A. Nguyen, G. and Rose, L. (2017). Residual opening of hydraulic fractures created using the channel fracturing technique, International Journal of Rock Mechanics and Mining Sciences, 100, pp.124- 137. DOI: 10.1016/j.ijrmms.2017.10.023. [25] Bortolan Neto, L. and Kotooussov, A. (2012). Residual opening of hydraulically stimulated fractures filled with granular particles, Journal of Petroleum Science and Engineering, 100, pp.24-29. [26] Freij-Ayoub, R., Tan, C. Clennell, B. Tohidi, B. and Yang, J.H. (2007). A wellbore stability model for hydrate bearing sediments, Journal of Petroleum Science and Engineering, 57, pp.209-220 . DOI: 10.1016/j.petrol.2005.10.011. [27] Meneghetti, G., Campagnolo, A., Berto, F. and Tanaka, K. (2017). Crack initiation life in notched Ti-6Al-4V titanium bars under uniaxial and multiaxial fatigue: Synthesis based on the averaged strain energy density approach, Frattura ed Integrita Strutturale, 11, pp.8-15. DOI: 10.3221/IGF-ESIS.41.02. [28] Bradley, W. (1979). Failure of Inclined Boreholes, Journal of Energy Resources Technology, 101(4), pp.232-239. DOI: 10.1115/1.3446925. [29] Liu, X., Zeng, W. Liang, L. and Lei, M. (2016). Wellbore stability analysis for horizontal wells in shale formations, Journal of Natural Gas Science & Engineering, 31, pp.1-8 . DOI: 10.1016/j.jngse.2016.02.061. [30] Liu, M., Yan, J. Lu, Y. Chen, M. Hou, B. Chen, W. Wen, X. and Yu, X. (2016). A Wellbore Stability Model for a Deviated Well in a Transversely Isotropic Formation Considering Poroelastic Effects, Rock Mechanics and Rock Engineering, 49(9), pp.3671–3686 . DOI: 10.1007/s00603-016-1019-8. [31] Aadnoy, B.S., and Chenevert, M.E. (1987). Stability of highly inclined boreholes, SPE Drilling Engineering, 2, pp.364- 374 . DOI: 10.2118/16052-PA.

RkJQdWJsaXNoZXIy MjM0NDE=