Issue 44
V. Reut et alii, Frattura ed Integrità Strutturale, 44 (2018) 82-93; DOI: 10.3221/IGF-ESIS.44.07 84 0, 0, 0, 0, , 0, , 0, 0 u y v y u a y v a y y (1) here ( , ) , x u x y u x y , ( , ) , y v x y u x y are the displacements that satisfy the Lame’s equilibrium equations 2 2 2 2 2 2 2 2 2 2 ( , ) ( , ) ( , ) 1 2 0 1 1 ( , ) ( , ) ( , ) 1 2 0 1 1 u x y u x y v x y x y x y v x y v x y u x y x y x y (2) where 3 4 is the Muskchelishvili’s constant. Two cases of the boundary conditions on the short edge are considered. In the first case (Fig. 1) the semi-strip is loaded at the edge 1 0, 0 y x a 1 ( , 0) , ( , 0) 0, 0 y xy x p x x x a (3) and conditions of the slide contact are executed at the segment 1 0, y a x a 1 ( , 0) 0, ( , 0) 0, xy v x x a x a (4) Figure 1 : First case: geometry and coordinate system of the problem. Figure 2 : Second case: geometry and coordinate system of the problem. In the second case (Fig. 2) the semi-strip is loaded at the edge 0, 0 y x a ( , 0) , ( , 0) 0, 0 y xy x p x x x a (5) At the segment 0 1 , c x c y B the crack is situated 1 0 1 2 0 1 , 0 , 0 , 0, , 0 , 0 , 0, u x B u x B u x B x c x c v x B v x B v x B x c x c (6)
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=