Issue 42
T.V. Tetyakova et alii, Frattura ed Integrità Strutturale, 42 (2017) 303-314; DOI: 10.3221/IGF-ESIS.42.32 313 A CKNOWLEDGEMENTS his study was funded by the Russian Science Foundation (grant number 16-19-00069). The work was carried out in the Perm National Research Polytechnic University. R EFERENCES [1] Benallal, A., Berstad, T., Børvik, T., Hopperstad, O.S., Koutiri, I., Nogueira de Codesa, R., An experimental and numerical investigation of the behavior of AA5083 aluminium alloy in presence of the Portevin–Le Chatelier effect, International Journal of Plasticity, 24 (2008) 1916–1945. DOI: 10.1016/j.ijplas.2008.03.008. [2] Bernard, C., Coër, J., Laurent, H., Chauvelon, P., Relationship between local strain jumps and temperature bursts due to the Portevin-Le Chatelier effect in an Al-Mg Alloy, Experimental Mechanics, 53 (2013) 1025 ‒ 1032. DOI: 10.1007/s11340-012-9711-4. [3] Daghfas, O., Znaidi, A., Ben Mohamed, A., Nasri, R., Experimental and numerical study on mechanical properties of aluminum alloy under uniaxial tensile test, Frattura ed Integrità Strutturale, 39 (2017) 263-273. DOI: 10.3221/IGF-ESIS.39.24. [4] Yilmaz, A., The Portevin-Le Chatelier effect: a review of experimental findings, Sci. Technol. Adv. Mater, 12 (2011) 1 ‒ 16. DOI: 10.1088/1468-6996/12/6/063001. [5] Aguirre, F., Kyriakides, S., Yun, H.D., Bending of steel tubes with Lüders bands, International Journal of Plasticity, 20 (2004) 1199–1225. DOI: 10.1016/j.ijplas.2003.05.001. [6] de Codes, R.N., Benallal, A., Influence of specimen geometry on the Portevin-Le Châtelier effect due to dynamic strain aging for the AA5083-H116 aluminum alloy, Journal of Mechanics of Materials and Structures, 6 (2012) 951– 968. DOI: 10.2140/jomms.2011.6.951. [7] Benallal, A., Berstad, T., Børvik, T., Hopperstad, O.S., Nogueira de Codesa, R., Effects of strain rate on the characteristics of PLC deformation bands for AA5083-H116 aluminium alloy, Philosophical Magazine, 88 (2008) 3311-3338. DOI: 10.1080/14786430802468223. [8] Xiaobo, Y., Fatigue crack growth of alumina alloy 7075-T651 under non proportional mixed mode I and mode II loads, Frattura ed Integrità Strutturale, 38 (2016) 148–154. DOI: 10.3221/IGF-ESIS.38.20. [9] Zhang, J., Jiang, Y., An experimental study of inhomogeneous cyclic plastic deformation of 1045 steel under multiaxial cyclic loading, International Journal of Plasticity, 21 (2005) 2174–2190. DOI: 10.1016/j.ijplas.2005.02.003. [10] Ozgowicz, W., Grzegorczyk, B., Pawelek, A., Wajda, W., Skuza, W., Piatkowski, A., Ranachowski, Z., Relation between the plastic instability and fracture of tensile tested Cu-Sn alloys investigated with the application of acoustic emission technique, Frattura ed Integrità Strutturale, 35 (2016) 11–20. DOI: 10.3221/IGF-ESIS.35.02. [11] Tretiakova, T.V., Vildeman, V.E., Relay-race deformation mechanism during uniaxial tension of cylindrical samples of carbon steel: using digital image correlation technique, Frattura ed Integrità Strutturale, 24 (2013) 1–6. DOI: 10.3221/IGF-ESIS.24.01. [12] Avril, S., Pierron, F., Sutton, M.A., Yan, J., Identification of elasto-visco-plastic parameters and characterization of Lüders behavior using digital image correlation and the virtual fields method, Mechanics of Materials, 40 (2008) 729 ‒ 742. DOI: 10.1016/j.mechmat.2008.03.007. [13] Vildeman, V. E., Lomakin, E. V., Tretiakova, T. V., Yield delay and space-time inhomogeneity of plastic deformation of carbon steel, Mechanics of Solids, 50 (2015) 412–420. DOI: 10.3103/S002565441504007X. [14] Tretyakova, T.V., Wildemann, V.E., Study of spatial-time inhomogeneity of serrated plastic flow Al-Mg alloy: using DIC-technique, Frattura ed Integrità Strutturale, 27 (2014) 83–97. DOI: 10.3221/IGF-ESIS.27.10. [15] Lomakin, E. V., Tretyakova, T. V., Wildemann, V. E., Effect of quasi-periodic homogenization of plastic deformations in the process of tension of samples of an aluminum–magnesium alloy, Doklady Physics, 60 (2015) 131– 134. DOI: 10.1134/S1028335815030040. N OMENCLATURE σ stress T
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=