Issue 42
D. V. Orlova et alii, Frattura ed Integrità Strutturale, 42 (2017) 293-302; DOI: 10.3221/IGF-ESIS.42.31 301 [3] Johnston, W.G., Gilman, J.J., Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals, J. Appl. Phys., 30 (1959) 129 – 134. [4] Kubin, L.P., Estrin, Y., Strain nonuniformities and plastic instabilities, Rev. Phys .Appl., 23 (1988) 573 – 583. [5] Burgers, J.M., Geometrical considerations concerning the structural irregularities to be assumed in a crystal, Proc. Phys. Soc., 52 (1940) 23-33. [6] Read, W.T., Shockley, W., Dislocation models of crystal grain boundaries, Phys. Rev., 78 (1950) 275 – 289. [7] Estrin, Y., Toth, L.S., Molinari, A., Brechet, Y., A dislocation-based model for all hardening stages in large strain deformation, Acta Mater., 46 (1998) 5509-5522. [8] Armstrong, R.W., Dislocation viscoplasticity aspects of material fracturing, Eng. Fract. Mech., 77 (2010) 1348-1359. [9] Griffith, A.A., The phenomena of rupture and flow in solids, Philos. Trans. R. Soc., 221 (1921) 163–198. [10] Orowan, E., Dislocations in Metals, AIME, New York, (1954). [11] Panin, V.E., Egorushkin, V.E., Panin ,A.V., The plastic shear channeling effect and the nonlinear waves of localized plastic deformation and fracture, Phys. Mesomech., 13 (2010) 215-232. [12] Panin ,V.E., Egorushkin, V.E., Deformable solid as a nonlinear hierarchically organized system, Phys. Mesomech., 14 (2011) 207-223. [13] Ning, J., Aifantis, E.C., On the description of anisotropic plastic flow by the scale invariance approach, Int. J. Plasticity, 11 (1995) 183-193. [14] Zaiser, M., Glazov, M., Lalli, L.A., Richmond, O., On the relations between strain and strain-rate softening phenomena in some metallic materials: a computational study, Comp. Mater. Sci., 15 (1999) 35-49. [15] Zaiser, M., Avlonitis, M., Aifantis, E., Stochastic and deterministic aspects of strain localization during cyclic plastic deformation. Acta Mater., 46 (1998) 4143-4151. [16] Chrysochoos, A., Louche, H., An infrared image processing to analyse the calorific effects accompanying strain localisation, Int. J. Eng. Sci., 38 (2000) 1759-1788. [17] Inal, К., Wu, P.D., Neale, K.W., Instability and localized deformation in polycrystalline solids under plane-strain tension, Int. J. Solid. Struct. 39 (2002) 983-1002. [18] Benallal, A., Berstad, T., Børvik, T., Clausen, A.H., Hopperstad, O.S. Dynamic strain aging and related instabilities: experimental, theoretical and numerical aspects, Eur. J. Mech, A-Solid, 25 (2006) 397–424. [19] Sarmah, R., Ananthakrishna ,G., Influence of system size on spatiotemporal dynamics of a model for plastic instability: Projecting low-dimensional and extensive chaos, Phys. Rev. E, 87 (2013) 052907. [20] Haken, H., Information and Self-Organization, Springer, Berlin, (1988). [21] Zuev, L.B., On the waves of plastic flow localization in pure metals and alloys, Ann. Phys., 16 (2007) 286–310. [22] Zuev, L.B., Barannikova, S.A., Experimental study of plastic flow macro-scale localization process: Pattern, propagation rate, dispersion, Int. J. Mech. Sci., 88 (2014) 1-7. [23] Danilov, V.I., Orlova, D.V., Zuev, L.B. On the kinetics of localized plasticity domains emergent at the pre-failure stage of deformation process, Mater. Design, 32 (2011) 1554 – 1558. [24] Zuev, L.B. Regularities of the localized plastic flow viewed as consequences of elastoplastic invariant of strain, Metallofiz.Noveishie Tekhnol., 38 (2016) 1335-1349. [25] Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D., Scale dependent crystal plasticity framework with dislocation density and grain boundary effect, Int. J. Solid Struct., 41 (2004) 5209-5230. [26] Billingsley, J.P., The possible influence of the de Broglie momentum-wavelength relation on plastic strain ‘autowave’ phenomena in ‘active materials’, Int. J. Solid. Struct., 38 (2001) 4221-4234. [27] Kobayashi, M., Ultrasound nondestructive evaluation of microstructural changes under plastic deformation, Int. J. Plasticity, 19 (2003) 511-522. [28] Kobayashi, M., Analysis of deformation localization based on the proposed theory of ultrasonic wave velocity propagation in plastically deformed solids, Int. J. Plasticity, 26 (2010) 107-125. [29] Maurel, A., Pagneux, V., Barra, F., Lund, F., Ultrasound as a probe of plasticity? The interaction of elastic waves with dislocations, Int. J. Bifur. Chaos, 19 (2009) 2765-2781. [30] Barannikova, S., Lunev, A., Li, Yu., Zuev, L., Use of Acoustic Parameter Measurements for Evaluating the Reliability Criteria of Machine Parts and Metalwork, Key Eng. Mater., 743 (2017) 486-489. [31] Amelinckx, S., The direct observation of dislocations, Academic Press., New York, (1964). [32] Hull, D., Effect of grain size and temperature of slip, twining and fracture in 3% silicon iron, Acta Met., 9 (1961) 191-204. [33] Honeycombe, R.W.K., The plastic deformation of metals, Edward Arnold Ltd., New York, (1968). [34] Zuev, L.B., Danilov, V.I., A self-excited wave model of plastic deformation in solids, Philos. Mag., 79 (1999) 43-57.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=