Issue 42

P. Raposo et alii, Frattura ed Integrità Strutturale, 42 (2017) 105-118; DOI: 10.3221/IGF-ESIS.42.12 108 Figure 3 . Procedure for the estimation of the probabilistic fatigue crack propagation fields for the notched geometries. In this study, sub-steps a), b) and c) were replaced by an elastoplastic finite element analysis in order to allow the direct computation of the residual stress fields to be performed. iii) The residual stress distribution computed ahead of the crack tip is assumed to be applied on the crack faces, behind the crack tip, in a symmetric way with respect to the crack tip. The residual stress intensity factor, K r , is then computed using the weight function method according to the following general expression [13]:     0 . , a r r K x m x a dx    (1) To this purpose, the weight function m ( x , a ) was computed for the cracked detail under consideration using the following expression [10]:   1 , . y uH m x a K a    (2) Elastoplastic Stress Analysis  (cracked geometry)  FEM  Linear‐elastic Stress Analysis  (cracked geometry)  FEM  Residual Stress, σ r Weight Function    a u K H a,xm y I     Stress Intensity Factor  (J‐Integral method)   K applied and K max,applied  Residual Stress Intensity Factor      dx a,xmx K a 0 r r     r applied tot r applied max, tot max, K K K K K K       Actual elastoplastic stresses and strains  (σ max and  ε/2)  Neuber’s Approach  Δσ applied  , R  Crack Propagation Data  and  UniGrow Model  Elementary material block size  a = a i =  *  K max,applied < K c  YES  a = a +  *  NO  ε‐N exp. data p‐ε‐N or p‐SWT‐N  Weibull fields p‐S‐N p ‐R fields  END

RkJQdWJsaXNoZXIy MjM0NDE=