Issue 40

L. Zou et alii, Frattura ed Integrità Strutturale, 40 (2017) 137-148; DOI: 10.3221/IGF-ESIS.40.12 148 [8] Ronold, K. O., Lotsberg, I., On the estimation of characteristic S – N curves with confidence, Marine Structures, 27 (2012) 29-44. DOI: 10.1016/j.marstruc.2012.03.002. [9] Paolino, D. S., Chiandussi, G., Rossetto, M., A unified statistical model for S-N fatigue curves: probabilistic definition, Fatigue & Fracture of Engineering Materials & Structures, 36 (2013) 187–201. DOI:10.1111/j.1460-2695.2012.01711.x [10] Wang, P., Liu, X., Wang, Q., et al., Thickness effect on fracture toughness of A7N01P-T5 aluminum alloy, Transactions of the China Welding Institution, (2013) 45-48.(in Chinese) [11] Zhu, M., Xuan, F., Fatigue crack initiation potential from defects in terms of local stress analysis, Chinese Journal of Mechanical Engineering, 27 (2014) 496-503. [12] Yannan, D. U., Zhu, M., Xuan, F., Effect of Stress Ratio on the Transition Point of Fatigue Crack Growth Curve in the Near-threshold Regime of a 25Cr2Ni2MoV Steel Welded Joint, Journal of Mechanical Engineering, 51 (2015) 44- 49.(in Chinese) [13] ASME, ASME Boiler and Pressure Vessel Code Section VIII Division 2 Part 5: Design by Analysis Requirement, New York, (2007). [14] Pawlak, Z., Rough classification, International Journal of Man-Machine Studies, 51 (1984) 469-483. DOI:10.1006/ijhc.1983.0315 [15] Wang, G. Y., Yao, Y. Y., Yu, H., A Survey on Rough Set Theory and Applications, Chinese Journal of Computers, (2009) 1229-1246. (in Chinese) [16] Wen-Hang, L. I., Chen, S. B., Lin, T., et al., The Comparison of Discretization Method in Rough Set Based Modeling Method for Welding, Journal of Shanghai Jiaotong University, 40 (2006) 1094-1097. (in Chinese) [17] Wen-Hang, L. I., Chen, S. B., Lin, T., et al., A Generalized Rough Set Modeling Method for Welding Process, Journal of Shanghai Jiaotong University, 12 (2007) 319-322. [18] Hu, Q., Yu, D., Xie, Z., Neighborhood classifiers, Expert Systems with Applications An International Journal, 34 (2008) 866-876. DOI: 10.1016/j.eswa.2006.10.043. [19] Li W., Huang Z., Jia X., et al., Neighborhood based decision-theoretic rough set models, International Journal of Approximate Reasoning, 69 (2016) 1-17. DOI: 10.1016/j.ijar.2015.11.005. [20] Nishijima, S., Statistical Analysis of Small Sample Fatigue Data, Transactions of the Japan Society of Mechanical Engineers A, 46 (1980) 234-245. [21] Boiler, A. S. o. M. E., Committee, P. V. ASME Boiler & Pressure Vessel Code: An Internationally Recognized Code , American Society of Mechanical Engineers, (1995). [22] Weibull, W. Fatigue Testing and Analysis of Results. Published for Advisory Group for Aeronautical Research and Development, North Atlantic Treaty Organization, Pergamon Press, (1961). [23] Sidhom, N., Laamouri, A., Fathallah, R., et al., Fatigue strength improvement of 5083 H11 Al-alloy T-welded joints by shot peening: experimental characterization and predictive approach, International Journal of Fatigue, 27 (2005) 729- 745. .DOI: 10.1016/j.ijfatigue.2005.02.001. [24] Beretta, S., Sala, G., A model for fatigue strength of welded lap joints, Fatigue & Fracture of Engineering Materials & Structures, 28 (2005) 257–264. DOI: 10.1111/j.1460-2695.2004.00849.x [25] Yang, X., Deng, W., Zou, L., et al., Fatigue behaviors prediction method of welded joints based on soft computing methods, Materials Science & Engineering A, 559 (2013) 574-582. DOI: 10.1016/j.msea.2012.08.144. [26] Yang, X. H., Zou, L., Deng, W., Fatigue life prediction for welding components based on hybrid intelligent technique, Materials Science & Engineering A, 642 (2015) 253-261. DOI: 10.1016/j.msea.2015.07.006.

RkJQdWJsaXNoZXIy MjM0NDE=