Issue 39

J. Klon et alii, Frattura ed Integrità Strutturale, 39 (2017) 17-28; DOI: 10.3221/IGF-ESIS.39.03 28 [15] RILEM Committee FMT 50, Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams, Mater. Structures, 18 (1985) 285–296. [16] Veselý, V., Frantík, P., Reconstruction of fracture process zone during tensile failure of quasi- brittle materials, Appl. Comp. Mech., 4(2) (2010) 237–250. [17] Veselý, V., Frantík, P., An application for the fracture characterisation of quasi- brittle materials taking into account fracture process zone influence, Adv. Eng. Softw., 72 (2014) 66–76. DOI: 10.1016/j.advengsoft.2013.06.004. [18] Frantík, P., Veselý, V., Keršner, Z., Parallelization of lattice modelling for estimation of fracture process zone extent in cementitious composites, Adv. Eng. Softw., 60–61 (2013) 48–57. DOI: 10.1016/j.advengsoft.2012.11.020. [19] Hillerborg, A., Modéer, M., Petersson, P-E., Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cem. Concr. Res., 6 (1976) 773–782. [20] Bažant, Z.P., Oh, B.-H., Crack band theory for fracture of concrete, Mater. Struct., 16 (1983) 155–177. [21] Veselý, V., Frantík, P., Keršner, Z. Cracked volume specified work of fracture, in: Topping, B.H-V., Costa Neves, L.F., Barros, R.C. (eds), Proceedings of the 12th int. conf on civil, structural and environmental engineering computing. Stirlingshire: Civil-Comp Press (2009). [22] Veselý, V., Frantík, P., Vidya Sagar, R., Štafa, M., Pail, T., Balanced energy dissipation at propagating crack tip in quasi-brittle materials? – Analysis via soft-computing methods, Key Eng. Mat., 577–578 (2014) 269–272. DOI: 10.4028 /www.scientific.net/KEM.577-578.269. [23] Klon, J., Veselý, V., Energy dissipation during quasi-brittle fracture associated with the crack and the fracture process zone progression, Key Eng. Mat., 665 (2016) 261–264. DOI:10.4028/www.scienti _c.net/KEM.665.261. [24] Hoover, Ch.G., Bažant, Z.P., Vorel, J., Wendner, R., Hubler, M.H., Comprehensive concrete fracture tests: Description and results, Engng. Fract. Mech., 114 (2013) 92–103. [25] Vidya Sagar, R., Raghu Prasad, B.K., An experimental study on fracture process zone in HSC three point bend beam specimen using acoustic emission method, Journal of Structural Engineering, 36(1) (2009) 397–407. [26] Vidya Sagar, R., Raghu Prasad, B.K., Fracture analysis of concrete using singular fractal functions with lattice beam network and confirmation with acoustic emission study, Theoretical and Applied Fracture Mechanics, 55 (2011) 192– 205. DOI:10.1016/j.tafmec.2011.07.003. [27] Xu, S., Reinhardt, H.W., Crack extension resistance and fracture properties of quasi-brittle softening materials like concrete based on the complete process of fracture, International Journal of Fracture, 92 (1998) 71–99. [28] Reinhardt, H.W., Xu, S., Crack extension resistance based on the cohesive force in concrete, Engng. Fract. Mech., 64 (1999) 563–587. [29] Červenka, V., Jendele, L., Červenka, J., ATENA Program Documentation, Cervenka Consulting, Prague (2010). [30] Klon, J., Modeling of fracture process in quasi-brittle materials, Master’s Thesis, Brno University of Technology, Faculty of Civil Engineering, Institute of Structural Mechanics, Brno (2016). [31] Klon, J. Fracture process zone and energy dissipation during fracture of quasi-brittle materials, Bachelor’s Thesis, Brno University of Technology, Faculty of Civil Engineering, Institute of Structural Mechanics, Brno (2014). [32] Otsuka, K., Date, H., Fracture process zone in concrete tension specimen, Engineering Fracture Mechanics, 65 (2000) 111–131. [33] Kumpová, I., Fíla, T., Vavřík, D., Keršner, Z. X-ray dynamic observation of the evolution of the fracture process zone in a quasi-brittle specimen, Journal of Instrumentation, 10 (2015). DOI:10.1088/1748-0221/10/08/C08004. [34] Vavřík, D., Jandejsek, I., Fíla, T., Veselý, V., Radiographic observation and semi-analytical reconstruction of fracture process zone in silicate composite specimen, Acta Technica, 58 (2013) 315–326. [35] Veselý, V., Sobek, J., Tesař, D., Frantík, P., Pail, T., Seitl, S., Multi-parameter approximation of stress field in a cracked specimen using purpose-built Java applications, Frattura ed Integrità Strutturale, 33 (2015) 120–133. [36] Veselý, V., Sobek, J., Malíková, L., Frantík, P., Seitl, S., Multi-parameter crack tip stress state description for estimation of fracture process zone extent in silicate composite WST specimens, Frattura ed Integrità Strutturale, 25 (2013) 69–78. [37] Malíková, L., Veselý, V. The influence of higher-order terms of Williams series on a more accurate description of stress fields around the crack tip. Fatigue & Fracture of Engineering Materials & Structures, 38 (2015) 91–103.

RkJQdWJsaXNoZXIy MjM0NDE=