Issue 39

M.A. Tashkinov, Frattura ed Integrità Strutturale, 39 (2017) 248-262; DOI: 10.3221/IGF-ESIS.39.23 261 DOI: 10.1016/j.compstruct.2013.06.008. [7] Khokhar, Z.R., Ashcroft, I.A., Silberschmidt, V.V., Simulations of delamination in CFRP laminates: Effect of microstructural randomness, Computational Materials Science, 46 (2009) 607-613. DOI: 10.1016/j.commatsci.2009.04.004. [8] Ullah, H., Harland, A.R., Silberschmidt, V.V., Damage modelling in woven-fabric CFRP laminates under large- deflection bending, Computational Materials Science, 64 (2012) 130-135. DOI: 10.1016/j.commatsci.2012.05.036. [9] Orifici, A.C., Herszberg, I., Thomson, R.S., Review of methodologies for composite material modelling incorporating failure, Composite Structures, 86 (2008) 194-210. DOI: 10.1016/j.compstruct.2008.03.007. [10] Hill, R., The mathematical theory of plasticity, Oxford University Press, London, (1950). [11] Tsai, S. W., Wu, E. M. A general theory of strength for anisotropic materials, Journal of Composite Materials, 5 (1971) 58-80. [12] Hashin, Z., Rotem, A., A fatigue failure criterion for fiber reinforced materials., J. Compos. Mater., 7 (1973) 448–464. [13] Hashin, Z., Failure Criteria for Unidirectional Fiber Composites, J. of Applied Mechanics, 47 (1980) 329 - 334. [14] Puck, A., Schurmann, H., Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models, Composites Science and Technology, 58 (1998) 1045-1067. [15] Chang, F.K., Chang, K.Y., A progressive damage model for laminated composites containing stress concentrations, J. Compos. Mater., 21 (1987) 834–855. [16] Banks-Sills, L. Application of the finite element method to linear elastic fracture mechanics, Appl. Mech. Rev., 44 (1991) 447–461. [17] Rybicki, E.F., Kanninen, M.F., A finite element calculation of stress intensity factors by a modified crack closure integral, Eng. Fract. Mech., 9 (1977) 931–938. [18] Mi, Y., Crisfield, A., Hellweg, H.-B., Davies, G.A.O., Progressive delamination using interface elements, J. Compos. Mater., 32 (1998) 1246–1272. [19] Liu, P.F., Hou, S.J., Chu, J.K., Hu, X.Y., Zhou, C.L., Liu, Y.L., et al., Finite element analysis of postbuckling and delamination of composite laminates using virtual crack closure technique, Compos. Struct., 93 (2011) 1549–1560. [20] Krueger, R., Virtual crack closure technique: History, approach, and applications, Appl. Mech. Rev., 57 109-143. [21] Kenane, M., Benzeggagh, M.L., Mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue loading, Composites Science and Technology, 57 (1997) 597-605. DOI: 10.1016/S0266-3538(97)00021-3. [22] Roylance, D. Introduction to Fracture Mechanics, Massachusetts Institute of Technology, Cambridge, (2001). [23] Rizov, V.I., Fracture in Composites – An Overview (Part I), Journal of Theoretical and Applied Mechanics, 42 (2012) 3–42. [24] Annual Book of ASTM Standards, American Society for Testing and Materials, 15.03 (2000). [25] Soden, P.D., Hinton, M.J., Kaddour, A.S., Lamina Properties, Lay-up Configurations and Loading Conditions for a Range of Fibre-Reinforced Composite Laminates, Composites Science and Technology, 58 (1998) 1011-1022. [26] Reeder, J. R., A Bilinear Failure Criterion for Mixed Mode Delamination, in: E.T. Camponeschi, Jr. (Ed.), Composite Materials: Testing and Design (Eleventh Volume), American Society for Testing and Materials, Philadelphia, (1993) 303-322. [27] Tsai, S.W., Strength Theories of Filamentary Structures, in: R.T. Schwartz and H.T. Schwartz (Eds.), Fundamental Aspects of Fiber Reinforced Plastic Composites, Wiley Interscience, New York, (1968) 3-11. [28] Mayes, J.S., Hansen, A.C., Multicontinuum Failure Analysis of Composite Structural Laminates, Mechanics of Composites Materials and Structures, 8 (2001) 249-262. [29] Wimmer, G., Schuecker, C., Pettermann, H.E., Numerical simulation of delamination in laminated composite components – A combination of a strength criterion and fracture mechanics, Composites Part B: Engineering, 40 (2009) 158-165. DOI: 10.1016/j.compositesb.2008.10.006. [30] Olsson, R., Thesken, J.C., Brandt, F., Jönsson, N., Nilsson, S., Investigations of delamination criticality and the transferability of growth criteria. Compos. Struct., 36 (1996) 221–247. [31] Rhead, A.T., Butler, R., Baker, N. Analysis and compression testing of laminates optimized for damage tolerance, Appl. Compos. Mater., 18 (2011) 85–100. [32] Saravanos, D.A., Birman, V.B., Hopkins, D.A. Detection of delaminations in composite beams using piezoelectric sensors., A.I.A.A., (1994) 1754. [33] Braga, D.F.O., Tavares, S.M.O., da Silva, L.F.M., Moreira, P.M.G.P., de Castro P.M.S.T., Advanced design for lightweight structures: Review and prospects, Progress in Aerospace Sciences, 69 (2014) 29-39. DOI: 10.1016/j.paerosci.2014.03.003.

RkJQdWJsaXNoZXIy MjM0NDE=