Issue 39

M. Krejsa et alii, Frattura ed Integrità Strutturale, 39 (2017) 143-159; DOI: 10.3221/IGF-ESIS.39.15 158 [7] Halama, R., Fusek, M., Poruba, Z., Influence of mean stress and stress amplitude on uniaxial and biaxial ratcheting of ST52 steel and its prediction by the AbdelKarim-Ohno model, International Journal of Fatigue, (2016). DOI: 10.1016/j.ijfatigue.2016.04.033. [8] Hokes, F., Kala, J., Krnavek, O., Nonlinear numerical simulation of a fracture test with use of optimization for identification of material parameters, International Journal of Mechanics, 10 (2016) 159-166. [9] Janas, P., Krejsa, M., Krejsa, V., Direct Optimized Probabilistic Calculation, first ed., VSB-Technical University of Ostrava, Ostrava, (2015) 191. (in Czech) [10] Janssen, M., Zuidema, J., Wanhill, R.J.H., Fracture mechanics, second ed., Delft University Press, The Netherlands (2002). [11] Kala, Z., Higher-order approximations methods for global sensitivity analysis of nonlinear model outputs, International Journal of Mathematics and Computers in Simulation, 10 (2016) 260-264. [12] Kala, Z., Kala, J., Skaloud, M., Teply, B., Sensitivity analysis of the effect of initial imperfections on the (i) ultimate load and (ii) fatigue behaviour of steel plate girders, Journal of Civil Engineering and Management, 11(2) (2005) 99- 107. [13] Khan, R.A., Ahmad, S., Bi-linear fatigue and fracture approach for safety analysis of an offshore structure, Journal of Offshore Mechanics and Arctic Engineering, 136(2) (2014) article number 021602. DOI: 10.1115/1.4026669. [14] Kotes, P., Vican, J., Recommended reliability levels for the evaluation of existing bridges according to Eurocodes, Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 23(4) (2013) 411-417. DOI: 10.2749/101686613X13627351081678. [15] Kotrasová, K., Grajciar, I., Kormaniková, E., Dynamic time-history response of cylindrical tank considering fluid - Structure interaction due to earthquake, Applied Mechanics and Materials, 617 (2014) 66-69. DOI: 10.4028 /www.scientific.net/AMM.617.66. [16] Kralik, J., Deterministic and probabilistic analysis of steel frame bracing system efficiency, Applied Mechanics and Materials, 390 (2013) 172-177. DOI: 10.4028 /www.scientific.net/AMM.390.172. [17] Krejsa, M., Probabilistic calculation of fatigue crack progression using FCProbCalc code, Transactions of the VSB – Technical University of Ostrava, Civil Engineering Series, 12(1) (2012) 1–11. DOI: 10.2478/v10160-012-0003-9. [18] Krejsa, M., Stochastic modelling of fatigue crack progression using the DOProC method, in: B.H.V. Topping (Edt.), Proceedings of the Eleventh International Conference on Computational Structures Technology, Civil-Comp Press, Stirlingshire, Scotland, (2012) 1–18. DOI: 10.4203/ccp.99.113. [19] Krejsa, M., Probabilistic failure analysis of steel structures exposed to fatigue, Key Engineering Materials, 577-578 (2014) 101-104. DOI: 10.4028 /www.scientific.net/KEM.577-578.101. [20] Krejsa, M., Janas, P., Krejsa, V., Structural reliability analysis using DOProC method, Procedia Engineering, 142 (2016) 34-41. DOI: 10.1016/j.proeng.2016.02.01010.1016/j.proeng.2016.02.010. [21] Krejsa, M., Kala, Z., Seitl, S., Inspection based probabilistic modeling of fatigue crack progression, Procedia Engineering, 142 (2016) 146-153. DOI: 10.1016/j.proeng.2016.02.025. [22] Krejsa, M., Kralik, J., Probabilistic computational methods in structural failure analysis, Journal of Multiscale Modelling, 06 (2015) 1550006. DOI: 10.1142/S1756973715500067. [23] Krejsa, M., Tomica, V., Determination of inspections of structures subject to fatigue, Transactions of the VSB – Technical University of Ostrava, Civil Engineering Series, 11(1) (2011) 1–9. DOI: 10.2478/v10160-011-0007-x. [24] Ladinek, M., Lang, R., Lener, G., Fatigue strength according to EN 1993-1-9 - Annex B: Structural stresses - Thoughts to the revised version, Stahlbau, 85(4) (2016) 274-280. DOI: 10.1002/stab.201610373. [25] Lamich, D., Marschalko, M., Yilmaz, I., Bednarova, P., Niemiec, D., Kubecka, K., Mikulenka, V., Subsidence measurements in roads and implementation in land use plan optimisation in areas affected by deep coal mining, Environmental Earth Sciences, 75(1) (2016) 1-11. DOI: 10.1007/s12665-015-4933-2. [26] Lehner, P., Konecny, P., Brozovsky, J., Optimization of time step and finite elements on the model of diffusion of chlorides, ARPN Journal of Engineering and Applied Sciences, 11(3) (2016) 2083-2088. [27] Lokaj, A., Klajmonova, K., Round timber bolted joints exposed to static and dynamic loading, Wood Research, 59(3) (2014) 439-448. [28] Major, I., Major, M., Traveling waves in a thin layer composed of nonlinear hyperelastic Zahorski's material, Journal of Theoretical and Applied Mechanics, 47(1) (2009) 109-126. [29] Maljaars, J., Vrouwenvelder, T., Fatigue failure analysis of stay cables with initial defects: Ewijk bridge case study, Structural Safety, 51 (2014) 47–56. DOI: 10.1016/j.strusafe.2014.05.007. [30] Paris, P.C., Gomey, M.P., Anderson, W.E., A rational analytic theory of fatigue, The Trend in Engineering, 13 (1961) 9-14.

RkJQdWJsaXNoZXIy MjM0NDE=