Issue 38

S. Bennati et alii, Frattura ed Integrità Strutturale, 38 (2016) 377-391; DOI: 10.3221/IGF-ESIS.38.47 389 [8] Al-Emrani, M., Klieger, R., Analysis of interfacial shear stresses in beams strengthened with bonded prestressed laminates, Compos. Part B – Eng., 37 (2006) 265–272. [9] Benachour, A., Benyoucef, S., Tounsi, A., Adda Bedia, E.A., Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate, Eng. Struct., 30 (2008) 3305–3315. [10] De Lorenzis, L., Zavarise, G., Cohesive zone modeling of interfacial stresses in plated beams, Int. J. Solids Struct., 46 (2009) 4181–4191. [11] Cornetti, P., Carpinteri, A., Modelling the FRP-concrete delamination by means of an exponential softening law, Eng. Struct., 33 (2011) 1988–2001. [12] Cornetti, P., Corrado, M., Lorenzis, L.D., Carpinteri, A., An analytical cohesive crack modeling approach to the edge debonding failure of FRP-plated beams, Int. J. Solids Struct., 53 (2015) 92-106. [13] Bennati, S., Dardano, N., Valvo, P.S., A mechanical model for FRP-strengthened beams in bending, Frattura ed Integrità Strutturale, 22 (2012) 39–55. [14] Bennati, S., Colonna, D., Valvo, P.S., A cohesive-zone model for steel beams strengthened with pre-stressed laminates, Procedia Structural Integrity, 2 (2016) 2682–2689. [15] EN 19:1957, IPE beams: I-beams with parallel flange facings. [16] Sika ® AG, www.sika.com . [17] Linghoff, D., Al-Emrani, M., Kliger, R., Performance of steel beams strengthened with CFRP laminate – Part 1: Laboratory tests, Compos. Part B – Eng., 41 (2010) 509–515. [18] Linghoff, D., Al-Emrani, M., Performance of steel beams strengthened with CFRP laminate – Part 2: FE analyses, Compos, Part B – Eng., 41 (2010) 516–522. [19] EN 1990:2002+A1:2005, Eurocode: Basis of structural design. [20] EN 1993-1-1:2005, Eurocode 3: Design of steel structures – Part 1–1: General rules and rules for buildings. [21] Ministero delle Infrastrutture e dei Trasporti, Decreto 31 luglio 2012, Approvazione delle Appendici nazionali recanti i parametri tecnici per l’applicazione degli Eurocodici, Rome, Italy (2013). [22] CNR-DT 200 R1/2013, Istruzioni per la Progettazione, l’Esecuzione ed il Controllo di Interventi di Consolidamento Statico mediante l’utilizzo di Compositi Fibrorinforzati, Rome, Italy (2005). [23] CNR-DT 202/2005, Studi Preliminari finalizzati alla redazione di Istruzioni per Interventi di Consolidamento Statico di Strutture Metalliche mediante l’utilizzo di Compositi Fibrorinforzati, Rome, Italy (2005). A CKNOWLEDGEMENTS inancial support from the ERA-NET Plus Infravation 2014 Call within the project SUREBridge (www.surebridge.eu ) through subcontract by partner company AICE Consulting Srl (www.aiceconsulting.it ) is gratefully acknowledged. A PPENDIX Formulation of the differential problem he axial strains at the bottom surface of the beam and in the laminate due to the applied load, q , can be defined respectively as f Q b Q b Q f Q dw s dw s s s ds ds , , , , ( *) ( ) ( ) and ( *) *     (A1) Besides, from Navier’s equation and the constitutive laws for the beam and laminate, we have f Q b Q b Q b b Q f Q s b s b f f N N M h E A E I E A , , , , , and 2      (A2) In order to formulate the differential problem through a single equation, we start by differentiating Eq. (9) with respect to s : F T

RkJQdWJsaXNoZXIy MjM0NDE=