Issue 38
U. Haider et alii, Frattura ed Integrità Strutturale, 38 (2016) 305-318; DOI: 10.3221/IGF-ESIS.38.41 317 [4] Punta, E., Lövgren, L., Ash is a useful chemical substance - It is registered in the European Chemical Register, http://www.varmeforsk.se/files/program/askor/2_puunta_.pdf, (2015). [5] González, A., Navia, R., Moreno, N., Fly ashes from coal and petroleum coke combustion: current and innovative potential applications, Waste Manage Res., 27 (2009) 976–987. DOI: 10.1177/0734242X09103190. [6] Zha, F., Liu, S., Du, Y., Cui, K., Behaviour of expansive soils stabilized with fly ash, Nat Hazards, 47 (2008) 509–523. DOI: 10.1007/s11069-008-9236-4. [7] He, Y., Cheng, W., Cai, H., Characterization of α-cordierite glass–ceramics from fly ash, Journal of Hazardous Materials, 120 (2005) 265–269. DOI: 10.1016/j.jhazmat.2004.10.028. [8] World coal association, http://www.worldcoal.org , (2015). [9] Durie, R.A., The Science of Victorian Brown Coal: structure, properties, and consequences for utilization, Butterworth-Heinemann, Oxford, (1991) 102–150. [10] Gharebaghi, M., Irons, R.M.A., Jones, J. M., Pourkashanian, M., Williams, A., Study of effect of oxycoal combustion conditions on fly ash characteristics, Journal of the Energy Institute, 84 (2011) 155-164. DOI: 10.1179/174396711X13050315650787. [11] Ramsdon, A.R., Shibaoka, M., Characterization and analysis of individual fly-ash particles from coal-fired power stations by a combination of optical microscopy, electron microscopy and quantitative electron microprobe analysis, Atmospheric Environment, (1982) 2191–2195. DOI: 10.1016/0004-6981(82)90290-6 [12] Sakorafa, V., Michailidis, K., Burragato, F., Mineralogy, geochemistry and physical properties of fly ash from the Megalopolis lignite fields, Peloponnese, southern Greece, Fuel, 75 (1996) 419– 423. DOI: 10.1016/0016-2361(95)00273-1. [13] Pedersen, K.H., Jensen, A.D., Skjoth, R., Dam, J.K., A review of the interference of carbon containing fly ash with air entrainment in concrete, Progress in Energy and Combustion Science, 34 (2008) 135–154. DOI: 10.1016/j.pecs.2007.03.002. [14] Kolay, P.K., Singh, D.N., Physical, chemical, mineralogical, and thermal properties of cenospheres from an ash lagoon, Cement and Concrete Research, 31 (2001) 539-542. DOI: 10.1016/S0008-8846(01)00457-4. [15] Ngu, L., Wu, H., Zhang, D., Characterization of Ash Cenospheres in Fly Ash from Australian Power Stations, Energy Fuels, 21 (2007) 3437–3445. DOI: 10.1021/ef700340k. [16] Kolay, P. K., Bhusal, S., Recovery of hollow spherical particles with two different densities from coal fly ash and their characterization, Fuel, 117 (2014) 118–124. DOI: 10.1016/j.fuel.2013.09.014. [17] Raask, E., Hollow and spherical particles in pulverized-fuel ash, Journal of the institute of fuel, (1968) 339 – 344. [18] Sokol, E.V., Maksimova, N.V., Volkova, N.I., Kalug, V.M., Nigmatulina, E.N., Frenkel, A.E., Hollow silicate microspheres from fly ashes of the Chelyabinsk brown coals (South Urals, Russia), Fuel Processing Technology, 67 (2000) 35–52. DOI: 10.1016/S0378-3820(00)00084-9. [19] ASTM C 618, Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, ASTM International, (2015). [20] Shaikh, F.U.A., Supit, S.W.M., Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA), Construction and Building Materials, 82 (2015) 192–205. DOI:10.1016/j.conbuildmat.2015.02.068. [21] Bendapudi S.C.K., Sasha, P., Contribution of fly ash to the properties of mortar and concrete, International Journal of Earth Sciences and Engineering, 4 (2011) 1017–1023. [22] Metso expect results, Metso centrifugal classifier for fly ash processing, http://www.metso.com/miningandconstruction/MaTobox7.nsf/DocsByID/40C9FFFFCFFE2F8EC2257D8700462 BB2/$File/FlyAshBrochure.pdf, (2016). [23] Sturtevant, Inc., Air classifiers, http://www.sturtevantinc.com/products/air-classifiers/, (2016). [24] Gloeckner, H., Hagemeier, T., Roloff, C., Thévenin, D., Tomas, J., Experimental Investigation on the Multistage Particle Classification in a Zigzag Air Classifier, Proceedings of the World Congress on Engineering, London, (2014). [25] Petrus, H.T.B.M., Hirajima, T., Oosako, Y., Nonaka, M., Sasaki, K., Ando, T., Performance of dry-separation processes in the recovery of cenospheres from fly ash and their implementation in a recovery unit, International Journal of Mineral Processing, 98 (2011) 15–23. DOI: 10.1016/j.minpro.2010.09.002. [26] Chindaprasirta, P., Homwuttiwong, S., Sirivivatnanon, V., Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar, Cement and Concrete Research, 34 (2004) 1087 – 1092. DOI: 10.1016/j.cemconres.2003.11.021. [27] Sinsiri, T., Teeramit, P., Jaturapitakkul, C., Kiattikomol, K., Effect of fineness of fly ash on expansion of mortars in magnesium sulfate, ScienceAsia, 32 (2006) 63–69, DOI: 10.2306/scienceasia1513-1874.2006.32.063.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=