Issue 38

A. Gryguc et al, Frattura ed Integrità Strutturale, 38 (2016) 251-258; DOI: 10.3221/IGF-ESIS.38.34 258 [4] Pan, H., Ren, Y., Fu, H., Zhao, H., Wang, L., Meng, X., Qin, G., Recent developments in rare-earth free wrought magnesium alloys having high strength: A review, Journal of Alloys and Compounds, 663 (2016) 321–331. [5] Fan, K. L., He, G. Q., Liu, X. S., Liu, B., She, M., Yuan, Y. L., Yang, Y., Lu, Q., Tensile and fatigue properties of gravity casting aluminum alloys for engine cylinder heads, Materials Science and Engineering: A, 78-85 (2013) 586. [6] Somekawa, H., Maruyama, N., Hiromoto, S., Fatigue Behaviors and Microstructures in an Extruded Mg-Al-Zn Alloy, Materials Transactions, 49 (2008) 681-684. [7] Yin, S. M., Yang, F., Yang, X. M., Wu, S. D., Li, S. X., Li, G. Y., The role of twinning–detwinning on fatigue fracture morphology of Mg–3%Al–1%Zn alloy, Materials Science and Engineering A, 494 (2008) 397-400. [8] Xu, D. K., Liu, L., Xu, Y. B., Han, E. H., The crack initiation mechanism of the forged Mg–Zn–Y–Zr, Scripta Materialia, 56 (2007) 1-4. [9] Kalateh, E., Mahmoudi-Asl, H., Jahed, H., An asymmetric elastic–plastic analysis of the load-controlled rotating bending test and its application in the fatigue life estimation of wrought magnesium AZ31B, International Journal of Fatigue, 64 2014) 33-41. [10] Marzban, B., Toyserkani, E., Jahed, H., Applications of FBG Sensors to Strain Measurements of AZ31B Extrusion in Rotating Bending Test, in 25th CANCAM, London, Ontario, Canada, (2015). [11] Albinmousa, J., Jahed, H., Lambert, S., Cyclic Behaviour of Wrought Magnesium Alloy under Multiaxial Loading, International Journal of Fatigue, 33 (2011) 1403-1416. [12] Albinmousa, J., Jahed, H., Multiaxial Effects on LCF Behavior and Fatigue Failure of AZ31B Magnesium Extrusion, International Journal of Fatigue, 64 (2014) 103-116. [13] Albinmousa, J., Jahed, H., Lambert, S., Estimation of Fatigue Crack Orientation using Critical Plane Parameters: An Experimental Investigation," in ICMFF10, Kyoto, Japan, (2013). [14] Albinmousa, J., Jahed, H., Lambert, S., An energy-based fatigue model for wrought magnesium alloy under multiaxial load," in 9th International conference on multiaxial fatigue and fracture, Parma, Italy, (2010). [15] Jahed, H., Albinmousa, J., Multiaxial Behaviour of Wrought Magnesium Alloys–A Review and Suitability of Energy- Based Fatigue Life Model, Theoretical and Applied Fracture Mechanics, 73 (2014) 97-108. [16] Tokaji, K., Kamakura, M., Ishiizumi, Y., Hasegawa, N., Fatigue behaviour and fracture mechanism of a rolled AZ31, International Journal of Fatigue, 26 (2004) 1217-1224. [17] Morita, N. O. S., Fatigue properties of rolled AZ31B magnesium alloy plate, Trans. Nonferrous Met. Soc. China, (2010) s523-s526. [18] Albinmousa, J., Jahed, H., Lambert, S., Cyclic Axial and Cyclic Torsional Behaviour of Extruded AZ31B Magnesium Alloy, International Journal of Fatigue, 33(8) (2011) 1127-1139. [19] Sarker, D., Chen, D. L., Detwinning and strain hardening of an extruded magnesium, Scripta Materialia, 67 (2012) 165-168. [20] Sarker, D., Chen, D. L., Texture transformation in an extruded magnesium alloy under pressure, Materials Science and Engineering: A, 582 (2013) 63-67. [21] Gryguc, A., Jahed, H., Williams B., McKinley, J., MagForge – Mechanical Behaviour of Forged AZ31B Extruded, Materials Science Forum, 828-829 (2015) 291-297. [22] Wang, B., Xin, R., Huang, G., Liu, Q., Effect of crystal orientation on the mechanical properties and strain hardening, Materials Science and Engineering A, 534 (2011) 588-593.

RkJQdWJsaXNoZXIy MjM0NDE=