Issue 38

S. Tsutsumi et alii, Frattura ed Integrità Strutturale, 38 (2016) 244-250; DOI: 10.3221/IGF-ESIS.38.33 250 Fatigue simulation test on the non-loading fillet joint (d) The plastic contribution generated in the W.UpDown1 case was bigger that the contribution induced with a constant stress range or in the W.DownUp1 case. (e) The fatigue life based on H d was shorter than the fatigue life based on the cumulative damage rule. R EFERENCES [1] Byers, W.G., Marley, M.J., Mohammadi, J., Nielsen, R.J., Sarkani, S., Fatigue reliability reassessment procedures: state- of-the-art-paper, J. Struct. Eng., 123(3) (1997) 271-276. doi : 10.1061/(ASCE)0733-9445. [2] Kainuma, S., Mori, T., A fatigue strength evaluation method for load-carrying fillet welded cruciform joints, Int. J Fatigue, 30 (2006) 864-872. doi:10.1016/j.ijfatigue.2005.10.004. [3] Kainuma, S., Mori, T., Study on fatigue crack initiation point of load-carrying welded cruciform joints, Int. J Fatigue, 30 (2008) 1669-177. doi:10.1016/j.ijfatigue.2007.11.003. [4] Hashiguchi, K., Tsutsumi, S., Elastoplastic constitutive equation with tangential stress rate effect, Int. J Plasticity, 17 (2001),117-145. doi:10.1016/S0749-6419(00)00021-8. [5] Hashiguchi, K., Elastoplasticity theory. Lecture notes in applied and computational mechanics, F. Pfeiffer, P. Wriggers (Eds.), Springer, Berlin, Germany, 42 (2009). [6] Hashiguchi, K., Subloading surface model in unconventional plasticity, Int. J. Solids Structures, 25 (1989) 917-945. doi:10.1016/0020-7683(89)90038-3. [7] Tsutsumi, S., Murakami, K., Goto, K., Toyosada, M., Cyclic Stress-Strain Relationship during High Cycle Fatigue Process: Elastoplastic Constitutive Model Introducing Cyclic Damage Effect, Journal of the Japan Society of Naval Architects and Osean Engineers, 7 (2008) 243-250. [8] Miki, C. Fatigue and Fracture of Bridges, Asakura Publishing, Japan (2011) 144. [9] The Society of Materials Science. The Handbook of Fatigue Design, Japan, (1995) 123-125.

RkJQdWJsaXNoZXIy MjM0NDE=