Issue 38

N. Vaysfeld et alii, Frattura ed Integrità Strutturale, 38 (2016) 1-11; DOI: 10.3221/IGF-ESIS.38.01 6                                     c c x c c x c с c d x x x x x x x c x c x d K x d r x x x x 1 1 3,1 3,2 3,1 3,2 2 2 1 2 2 2 2 1 1 1 4 4 3 3 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 , , 1 1 2 2                                                                                       (13) here     a 1 2               ,     K x r x , ,   are the known regular functions, i c i , 1, 4   are shown in the Application B. The Eq. (13) is the partial case of the equation with two fixed singularities considered [21]                           m m k n k k m k m k k k k k k y c x y x x y c A x c x dy dy i y x i y y xy K x y y dy f x m k 1 1 2 1 0 1 0 1 1 1 1 , 1 1 1 1 1 1 , , 0 Re                                       which can be rewritten as                   A x c x c S x N x N x K x K x y y dy f x 1 0 1 1 1 1 1 1 ,                   where               m n k k k k k x k m kk k x y c N x dy c c c x i y x y 1 2 1 1 1 0 1 1 1 , 1, 1 lim , 1 2                                 , The symbol of the singular integral Eq. (13) was constructed, which has the following form, where all designations correspond to the designations in [21]                     m k k k k m k k k k c S c n R A A A c S c n R 2 1 2 , 0 , 2 1 2 , 0 , , , ,                                                 (14)           p S z cth i z z 1 / , , , , ,                   ,         k m k k k k k k k n iz m sh i z , 1 1 ,                ,

RkJQdWJsaXNoZXIy MjM0NDE=