Issue 38

S. Fu et al, Frattura ed Integrità Strutturale, 38 (2016) 141-147; DOI: 10.3221/IGF-ESIS.38.19 147 [3] Fu, S., Wang, L., Chen, G., Yu, D., Chen, X., A tension-torsional fatigue testing apparatus for micro-scale components, Rev. Sci. Instrum., 87 (2016) 015111. [4] Yang, X., Gao, Q., He, G., Cai, L., On nonproportional cyclic properties of type 316 stainless steels, Acta Metallurgica Sinica, 32 (1996) 15-22. [5] Liu, D., He, Y., Shen, L., Lei, J., Guo, S., Peng, K., Accounting for the recoverable plasticity and size effect in the cyclic torsion of thin metallic wires using strain gradient plasticity, Mater. Sci. Eng. A, 647 (2015) 84-90. [6] Chen, X., Jiao, R., Kim, K.S., On the Ohno-Wang kinematic hardening rules for multiaxial ratcheting modeling of medium carbon steel, Int. J. Plasticity, 21 (2005) 161-184. [7] Hamidinejad, S.M., Varvani-Farahani, A., Ratcheting of 304 stainless steel under multiaxial step-loading conditions, Int. J. Mech. Sci., 100 (2015) 80-89. [8] Ohno, N., Wang, J.-D., Kinematic hardening rules with critical state of dynamic recovery, part I: formulation and basic features for ratcheting behavior, Int. J. Plasticity, 9 (1993) 375-390. [9] Bari, S., Hassan, T., Anatomy of coupled constitutive models for ratcheting simulation, Int. J. Plasticity, 16 (2000) 381- 409. [10] Liu, D., He, Y., Dunstan, D. J., Zhang, B., Gan, Z., Hu, P., Ding, H., Toward a further understanding of size effects in the torsion of thin metal wires: An experimental and theoretical assessment, Int. J. Plasticity, 41 (2013) 30-52.

RkJQdWJsaXNoZXIy MjM0NDE=