Issue 38
J. Papuga et al., Frattura ed Integrità Strutturale, 38 (2016) 106-113; DOI: 10.3221/IGF-ESIS.38.14 112 [7] Papuga, J., Parma, S., Lutovinov, M., Růžička, M., Building a Foundation for Benchmarks for Fatigue Prediction Methods – The FinLiv Database. Procedia Engineering, 101 (2015) 372-379. [8] Neugebauer, J., Zum Schwingfestigkeitsverhalten von Gusswerkstoffen unter mehrachsiger, frequenzverschiedener Beanspruchung, [Technical report Report FB-175], LBF, Darmstadt, (1986). [9] McDiarmid, D.L., Fatigue under out-of-phase bending and torsion, Fatigue Fract. Engng. Mater. Struct., 9 (1987) 457-475. [10] Stefanov, S. H., The curvilinear integral method: computer realization and testing 1 (under non-proportional reversed axial force and torque), Int. Jnl. of Fatigue, 17 (1995) 567-575. [11] Froustey, C., Fatigue multiaxiale en endurance de l'acier 30NCD16, [PhD thesis], E.N.S.A.M. CER de Bordeaux, Bordeaux, (1987). [12] Froustey, C., Lasserre, S., Fatigue des aciers sous sollicitations combinees. Application a l'acier 30NCD16. [Technical report Rapport DRET-LAMEF-ENSAM. contrat 87/115], ENSAM, Talence, (1988). [13] Dubar, L. Fatigue multiaxiale des aciers. Passage de l'endurance a l'endurance limite. Prise en compte des accidents geometriques, [PhD thesis], E.N.S.A.M. CER de Bordeaux, Bordeaux, (1992). [14] Heidenreich, R., Schubspannungsintensitätshypothese - Dauerschwingfestigkeit bei mehrachsiger Beanspruchung [Forschungshefte FKM, Heft 105]. FKM, Frankfurt am Main – Niederrad, (1983). [15] Heidenreich, R., Richter, I., Zenner, H., Schubspannungsintensitätshypothese - weitere experimentelle und theoretische Untersuchungen Konstruktion, 36 (1984) 99-104. [16] Lempp, W., Festigkeitsverhalten von Stählen bei mehrachsiger Dauerschwingbeanspruchung durch Normalspannungen mit überlagerten phasengleichen und phasenverschobenen Schubspannungen, [PhD thesis], Technische Universität Stuttgart, Stuttgart, (1977). [17] Mielke, S., Festigkeitsverhalten metallischer Werkstoffe unter zweiachsiger schwingender Beanspruchung mit verschiedenen Spannungszeitverläufen, [PhD thesis], RWTH Aachen, Aachen, (1980). [18] Troost, A., Akin, O., Klubberg, F., Versuchs- und Rechendaten zur Dauerschwingfestigkeit von metallischen Werkstoffen unter mehrachsiger Beanspruchung, Materialwissenschaft und Werkstofftechnik 23 (1992) 1-12. [19] Kaniut, C., Zur Betriebsfestigkeit metallischer Werkstoffe bei mehrachsiger Beanspruchung, [PhD thesis], RWTH Aachen, Aachen, (1983). [20] Vu, Q., Halm, D., Nadot, Y., Multiaxial fatigue criterion for complex loading based on stress invariants, Int. Jnl. of Fatigue, 32 (2010) 1004-1014. [21] Araújo, J.A., Carpinteri, A., Ronchei, C., Spagnoli, A., Vantadori, S., An alternative definition of the shear stress amplitude based on the Maximum Rectangular Hull method and application to the C-S (Carpinteri-Spagnoli) criterion, Fatigue Fract. Engng. Mater. Struct., 36 (2014) 764-771. [22] Bennebach, M., Fatigue d'une fonte GS. Influence de l'entaille et d'un traitement de surface, [PhD thesis], ENSAM Cer de Bordeaux, Bordeaux, (1993). [23] Palin-Luc, T., Fatigue multiaxiale d’une fonte GS sous sollicitations combinées d’amplitude variable, [PhD thesis], ENSAM Cer de Bordeaux, Bordeaux, (1996). [24] Morel, F., Palin-Luc, T., A non-local theory applied to high cycle multiaxial fatigue, Fatigue Fract. Engng. Mater. Struct., 25 (2002) 649-665. [25] Findley, W.N., Combined-stress fatigue strength of 76S-T61 aluminum alloy with superimposed mean stresses and corrections for yielding, [Technical report NACA TN-2924], NACA, Washington, (1953). [26] Bruun, Ø.A., Härkegård, G., A comparative study of design code criteria for prediction of the fatigue limit under in- phase and out-of-phase tension–torsion cycles, Int. Jnl. of Fatigue, 73 (2015) 1-16. [27] Gough, H.J., Pollard, H.V., The strength of metals under combined alternating stresses, in: Proc. of Institute of Mechanical Engineering, The Institution of Automobile Engineers, London, 131 (1935) 1-103. [28] Gough, H.J., Pollard, H.V., Properties of some materials for cast crankshafts, with special reference to combined stresses, in: Proc. of the Institution of Automobile Engineers, The Institution of Automobile Engineers, London, (1937) 821-893. [29] Gough, H.J., Engineering steels under combined cyclic and static stresses, Journal of Applied Mechanics, (1950) 113- 125. [30] Rotvel, F., Biaxial fatigue tests with zero mean stresses using tubular specimens, Int Jnl. of Mech. Sci., 12 (1970) 597- 613. [31] Carpinteri, A., Spagnoli, A., Vantadori, S., Bagni, C., Structural integrity assessment of metallic components under multiaxial fatigue: the C–S criterion and its evolution, Fatigue Fract. Engng. Mater. Struct., 36 (2013) 870-883.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=