Issue 37

G. Cricrì et alii, Frattura ed Integrità Strutturale, 37 (2016) 333-341; DOI: 10.3221/IGF-ESIS.37.44 341 [2] Cricrì, G., A consistent use of the Gurson-Tvergaard-Needleman damage model for the R-curve calculation, Frattura ed Integrità Strutturale, 24 (2013) 161-174. DOI: 10.3221/IGF-ESIS.24.17 [3] Green, R.J., A plasticity theory for porous solids, Int. J. Mech. Sci. 14 (1972) 215-224. [4] Kuhn, H.A., Downey, C.L., Deformation characteristics and plasticity theory of sintered powder materials, Int. J. Powder Metall., 7-1 (1971) 15-25. [5] Doraivelu, S.M., Gegel, H.L., Gunasekera, J.S., Malas, J.C., Morgan, J.T., Thomas Jr., J.F., A new yield function for compressible PM materials, Int. J. Mech. Sci., 26-9/10 (1984) 527-535. [6] Shima, S., Oyane, M., Plasticity theory for porous metals, Int. J. Mech. Sci. 18 (1976) 285-291. [7] Pavier, E., Doremus, P., Triaxial characterisation of iron powder behaviour, Powder Metallurgy, 42-4 (1999) 345-352. [8] Fleck, N.A., Kuhn, L.T., McMeeking, R. M., Yielding of metal powder bonded by isolated contacts, J. Mech. Phys. Solids, 40-5 (1992) 1139-1162. DOI: 10.1016/0022-5096(92)90064-9 [9] Carnavas, P.C., Page, N.W., Elastic properties of compacted metal powders, Journal of Materials Science, 33 (1998) 4647-4655. [10] Jonsèn, P., Häggblad, H-Å., Modelling and numerical investigation of the residual stress state in a green metal powder body, Powder Technology, 155 (2005) 196-208. DOI: 10.1016/j.powtec.2005.05.056 [11] Lewis, R.W., Khoei, A.R., A plasticity model for metal powder forming processes, International Journal of Plasticity, 17 (2001) 1659-1692. DOI: 10.1016/S0749-6419(00)00096-6 [12] Khoei, A.R., Numerical simulation of powder compaction processes using an inelastic finite element analysis, Materials and Design, 23 (2002) 523-529. [13] Chtourou, H., Guillot, M., Gakwaya, A., Modelling of the metal powder compaction process using the cap model. Part. I. Experimental material characterization and validation, International Journal of Solids and Structure, 39 (2002) 1059-1075. DOI: 10.1016/S0020-7683(01)00255-4 [14] Park, S.J., Han, H.N., Oh, K.H., Lee, D.N., Model for compaction of metal powders, International Journal of Mechanical Sciences, 41 (1999) 121-141. [15] Smith, L.N., Midha, P.S., Graham, A.D., Simulation of metal powder compaction, for the development of a knowledge based powder metallurgy process advisor, Journal of Materials Processing Technology, 79 (1998) 94-100. [16] Bocchini, G.F., Criteri di classificazione del grado di complicazione delle forme dei componenti sinterizzati, La Metallurgia Italiana, 7 (2008) 37-44. [17] Biswas, K., Comparison of various plasticity models for metal powder compaction processes, J. of Material Processing Technology, 166 (2005) 107-115. DOI: 10.1016/j.jmatprotec.2004.08.006 [18] Bocchini, G.F., Cricrì, G., Esposito, R., Influence of operating temperature on shrink fitting pressure of PM dies, Powder Metallurgy, 39-3 (1996) 195-206. [19] Armentani, E., Bocchini, G.F., Cricrì, G., Esposito, R., Short dies and thin walled inserts for room temperature or warm compaction - numerical determination of design features, Powder Metallurgy, 45-2 (2002) 115-133. [20] Armentani, E., Bocchini, G.F., Cricrì, G., Esposito, R., Metal powder compacting dies: Optimised design by analytical or numerical methods, Powder Metallurgy, 46-4 (2003) 349-360. [21] Lewis, R.W., Khoei, A. R., Numerical modelling of large deformation in metal powder forming, Comput. Methods Appl. Mech. Engrg., 159 (1998) 291-328.

RkJQdWJsaXNoZXIy MjM0NDE=