Issue 35

S. Boljanović et alii, Frattura ed Integrità Strutturale, 35 (2016) 313-321; DOI: 10.3221/IGF-ESIS.35.36 321 [12] Elber, W., The significance of fatigue crack closure. In: Damage tolerance in aircraft structure, ASTM STR 486 (1971) 230-242. [13] Walker, E.K., The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T5 aluminum. In: Effect of environment and complex load history on fatigue life, ASTM STR 462 (1970) 1-14. [14] Kujawski, D., A new (  K + K max ) 0.5 driving force parameter for crack growth in aluminum alloy, Int. J. Fatigue, 23 (2001) 733-740. [15] Noroozi, A.H., Glinka, G., Lambert, S., A two parameter driving force for fatigue crack growth analysis, Int. J. Fatigue, 27 (2005) 1277-1296. [16] Newman, Jr. J.C., Raju, I.S., Stress-intensity factor equations for cracks in three-dimensional finite bodies, In: Lewis J.C. and Sines G. Eds. Fracture mechanics – Volume I: Theory and Analysis, ASTM STP 791 (1983) I-238-I-265. [17] Newman, Jr. J.C., Fracture analysis of surface and through-cracked sheets and plates, Eng. Fract. Mech., 5 (1973) 667- 689. [18] Boljanović, S., Maksimović, S., Fatigue crack growth modeling of attachment lugs, Int. J. Fatigue, 58 (2014) 66-74. [19] Barsoum, R.S., Triangular quarter-point elements as elastic and perfectly plastic crack tip elements, Int. J. Numer. Meth. Eng., 11 (1977) 85-98. [20] , (2013). [21] Kathiresan, K., Brussat, T.R., Advanced life analysis methods, AFWAL-TR-84-3080, OH, (1984). [22] Flech, W.G., Anderson, R.B., A mechanical model of fatigue crack propagation: In: Pratt P.L., editor. Proc of the second international conference on fracture. Brighton, London: Chapman & Hall: (1969). [23] Grandt, Jr. A.F., Harter, J.A., Tritisch, D.D., Semielliptical cracks along holes in plates and lugs, AFWAL-TR-83-3043, OH, (1982).