Issue 35

A. Nikitin et alii, Frattura ed Integrità Strutturale, 35 (2016) 213-222; DOI: 10.3221/IGF-ESIS.35.25 222 crack reaches a surface is clearly defined by different fracture morphology that is similar to well known ‘fish-eye’ crack. R EFERENCES [1] Shimamura, Y., Narita, K., Ishii, H., Tohgo, K., Fujii, T., Yagasaki, T., Harada, M., Fatigue properties of carburized alloy steel in very high cycle regime under torsional loading, Int.J. of Fatigue, 60 (2014) 57-62. DOI: 10.1016/j.ijfatigue 2013.06.016. [2] Tschegg, E.K., Stanzl-Tschegg, S.E., Mayer, H.R., High frequency method for torsion fatigue testing. Ultrasonics, 31(4) (1993) 275 - 280. [3] Bathias, C., Paris, P.C., Gigacycle Fatigue in Mechanical Practice, Dekker, New York, 2004, ISBN-10: 0824723139. [4] Nicholas, T., Critical issues in high cycle fatigue, Int. J. of Fatigue, 21 (1999) S221-S231. DOI: 10.1016/S0142- 1123(99)00074-2. [5] Sakai, T., Review and Prospects for Current Studies on Very High Cycle Fatigue of Metallic Materials for Machine Structural Use, J.Solid Mechanics and Material Engineering, 3(3) (2009) 425-439. DOI: 10.1299/jmmp.3.425. [6] Bathias, C., Piezoelectric fatigue testing machines and devices, Int. J. of Fatigue, 28(11) (2006) 1438-1445. DOI: 10.1016/j.ijfatigue.2005.09.020. [7] Mayer, H., Schuller, R., Karr, U., Irrasch, D., Fitzka, M., Hahn, M., Bacher-Hochst, M., Cyclic torsion very high cycle fatigue of VDSiCr spring steel at different load ratios, 70 (2015) 322-327. DOI: 10.1016/j.ijfatigue.2014.10.007. [8] Ishii, H., Tohgo, K., Fujii, T., Yagasaki, T., Harada, M., Shimamura, Y., Narita, K., Fatigue properties of carburised alloy steel in very high cycle regime under torsion loading, Int. J. of Fatigue, 60 (2014) 57-62. DOI: 10.1016/j.ijfatigue.2013.06.016. [9] Mayer, H., Ultrasonic torsion and tension-compression fatigue testing: Measuring principles and investigations on 2024-T351 aluminium alloy, 28(11) (2006), 1446-1455. DOI: 10.1016/j.ijfatigue.2005.05.020. [10] Xue, H.Q., Bathias, C., Crack path in torsion loading in very high cycle fatigue regime, Engineering Fracture Mechanics, 77 (2010) 1866-1873. DOI: 10.1016/j.engfracmech.2010.05.006. [11] Marines-Garcia, I., Doucet, J.P., Bathias, C., Development of a new device to perform torsional ultrasonic fatigue testing, Int. J. of Fatigue, 29 (2007) 2094-2101. DOI: 10.1016/j.ijfatigue.2007.03.016. [12] Nikitin, A., Palin-Luc, T., Shanyavskiy, A., Bathias, C., Fatigue cracking in bifurcation area of titanium alloy at 20 kHz, Proceeding Crack Path, (2012) 367-374. ISBN: 9788895940441. [13] Russian State Standard GOST-19807-91, Titanium and wrought titanium alloys, (2009). [14] Bathias, C., Nikitin, A., Palin-Luc, T., A new piezoelectric fatigue testing machine in pure torsion for gigacycle regime, 2014, 6 th International Conference VHCF-6, Chengdu, China. [15] Nikitin, A., Palin-Luc, T., Bathias, C., A new piezoelectric fatigue testing machine in pure torsion for ultrasonic gigacycle fatigue tests: application to forged and extruded titanium alloys, Fatigue and Fracture of Engineering Materials and Structures, online: 2015. DOI: 10.1111/ffe.12340 [16] Nikitin, A., Shanyavskiy, A., Palin-Luc, T., Bathias, C., Fatigue behaviour of the titanium alloy Ti-6Al-4Mo in bifurcation area at 20 kHz, 2012, 19th European Conference on Fracture - ECF-19, Kazan, Russia. [17] Nikitin, A., La Fatigue Gigacycle d’un alliage de Titane, These doctorale, Ecole Doctorale 139, U-Paris 10 Nanterre La Defense, (2015). [18] Shiozawa, D., Nakai, Y., Murakami, T., Nosho, H., Observation of 3D shape and propagation mode transition of fatigue cracks in Ti-6Al-4V under cyclic torsion using CT imaging with ultra-bright synchrotron radiation, Int. J. of Fatigue, 58 (2014) 158-165. DOI: 10:1016/j.ijfatigue.2013.02.018.