Issue 35

S. Glodež et alii, Frattura ed Integrità Strutturale, 35 (2016) 152-160; DOI: 10.3221/IGF-ESIS.35.18 160 In the framework of further research work, the eXtended Finite Element Method (XFEM) numerical procedure implemented in Abaqus code could be used to study the fatigue behavior of treated porous structure. The main advantage of such procedure would be simultaneous fatigue analyses of different cross sections which was not the case in present study. Furthermore, the real experimental procedure on real lotus-type porous structures will be needed to confirm the computational results. R EFERENCES [1] Ashby, M.F., Evans, A., Fleck, N.A., Gibson, L. J., Hutchinson, J. W., Wadley, H. N. G., Metal Foams: A Design Guide. Butterworth-Heinemann, Woburn, (2000). [2] Harte, A.M., Fleck, N.A., Ashby, M.F., Fatigue failure of an open cell and a closed cell aluminium alloy foam, Acta Materialia., 47(8) (1999) 2511-2524. [3] Ingraham, M.D., De Maria, C.J, Issen, K.A., Morisson, D.J., Low cycle fatigue of aluminium foam, Materials Science and Engineering A, 504 (2009) 150-156. [4] Patrick, J. V., Investigation of the behaviour of open cell aluminium foam, MSc. thesis, University of Massachusetts - Amherst, (2010). [5] Pinto, H., Arwade, S. R., Veale, P., Response of open cell aluminium foams to fully reversed cyclic loading, Journal of Engineering Mechanics, 137(12) (2011) 911-918. [6] Smith, B.H., Szyniszewski, S., Hajjar, J.F., Schafer, B.W., Arwade, S.R., Steel foam for structures: A review of applications, manufacturing and material properties, Journal of Constructional Steel Research, 71 (2012) 1-10. [7] Redenbach, C., Microstructure models for cellular materials, Computational Materials Science, 44 (2009) 1397-1407. [8] Altenbach, H., Öchsner, A., Cellular and porous materials in structures and processes, CISM courses and lectures, Springer Verlag, Wien-NewYork, 521 (2010). [9] Vesenjak, M., Kovačič, A., Masakazu, T., Borovinšek, M., Nakajima, H., Ren, Z., Compressive properties of lotus- type porous iron, Computational material science, 65 (2012) 37-43. [10] Seki, H., Tane, M., Nakajima, H. Fatigue crack initiation and propagation in lotus-type porous copper, Materials transactions, 49 (2008) 144-150. [11] Amsterdam, E., De Hosson, J.M., Onck, P.R., Failure mechanisms of closed-cell aluminium foam under monotonic and cyclic loading, Acta Mater., 54 (2006) 4465-4472. [12] Olurin, O.B., McCullough, K.Y.G, Fleck, N.A, Ashby, M,F, Fatigue crack propagation in aluminium’s alloy foams, Int. J. Fatigue, 23 (2001) 375-4472. [13] Zhou, J., Soboyejo, W. O., An investigation of deformation mechanisms in open cell aluminum foams, Materials Science and Engineering, A386 (2004) 118-128. [14] Seki, H., Tane, M., Nakajima, H., Effects of Anisotropic Pore Structure and Fiber Texture on Fatigue Properties of Lotus-type Porous Magnesium, J. Mater. Res, 22(11) (2007) 3120-3129. [15] Seki, H., Tane, M., Otsuka, M., Nakajima, H., Effects of Pore Morphology on Fatigue Strength and Fracture Surface of Lotus-type Porous Copper, J. Mater. Res, 22(7) (2007) 1331-1338. [16] Vesenjak, M., Borovinšek, M., Fiedler, T., Higa, Y., Ren, Z., Structural characterization of advanced pore morphology (APM) foam elements. Materials letters, 110 (2013) 201-203. [17] Vesenjak, M., Krstulović-Opara, L., Ren, Z., Characterization of irregular open-cell cellular structure with silicone pore filler, Polymer testing, 32 (2013) 1538-1544. [18] Vesenjak, M., Ren, Z., Öchsner, A., Dynamic behavior of regular closed-cell porous metals - computational study, International journal of materials engineering innovation, 1 (2009) 175-196. [19] Muralidharan, U., Manson, S.S., Modified universal slope equation for estimation of fatigue characteristics, Trans. ASME, J. Eng. Mater. Tech, 110 (1988) 55-88. [20] Čanžar, P., Tonković, Z., Drvar, N., Bakič, A., Kodvanj, J., Sorič, J., Experimental investigation and modelling of fatigue behavior of nodular cast iron for wind turbine applications, Proceedings of EURODYN 2011, Leuven, Belgium, (2011) 3252-3257.