Issue34

E. Marcisz et alii, Frattura ed Integrità Strutturale, 34 (2015) 379-386; DOI: 10.3221/IGF-ESIS.34.42 386 C ONCLUSIONS he following conclusions were formulated on the basis of alloy 2024 tests carried out with controlled energy parameter amplitude and bending moment amplitude: 1. Life of specimens at controlled energy parameter is slightly better than life of specimens at controlled bending moment amplitude. 2. The characteristics show converging tendency at lower values of the parameters, which is the effect of strains being taken into consideration (or not). 3. Depending on applied load and parameter, fatigue crack paths had different courses. R EFERENCES [1] Marcisz, E., Marciniak, Z., Rozumek, D., Macha E., Fatigue characteristics of aluminium alloy 2024 under cyclic bending with the controlled energy parameter. Key Engineering Materials, 592-593 (2014) 684-687. [2] ASTM E 606-80. Standard practcite for: Statistical analysis of linearized stress- life (S-N) and strain-life (  -N) fatigue data [in:] Annual Book of ASTM Standards, 03.01 Philadelphia (1989) 601-611. [3] ASTM E 739-80. Standard practcite for: Statistical analysis of linearized stress- life (S-N) and strain-life (  -N) fatigue data [in:] Annual Book of ASTM Standards, 03.01 Philadelphia (1989) 667-673. [4] Marcisz, E., Marciniak, Z., Rozumek, D., Macha, E., Energy fatigue characteristic of C45 steel subjected to cyclic bending, Key Engineering Materials, 298 (2014) 147-152. [5] Achtelik, H., Marciniak, Z., Macha, E., Marcisz, E., Rozumek, D., The stand for fatigue tests of materials with the controlled energy parameter under bending and torsion, Przegląd Mechaniczny, Warszawa, 12 (2013) 34-38, in Polish. [6] Macha, E., Słowik, J., Pawliczek, R., Energy based characterization of fatigue behavior of cyclically unstable materials, Solid State Phenomena, 147-149 (2009) 512-517. [7] Smith, K., Watson, P., Topper, T., A stress-strain function for the fatigue of metals, J. Materials, 5 (1970) 767-779. T

RkJQdWJsaXNoZXIy MjM0NDE=