Issue34

P. Hess, Frattura ed Integrità Strutturale, 34 (2015) 341-346; DOI: 10.3221/IGF-ESIS.34.37 346 taking into account the specific defect size dependence postulated by the Griffith relation, grasps the main features of graphene fracture mechanics, however, neglecting detailed features such as the dependence of fracture on crystallographic direction and the nature of applied tension. R EFERENCES [1] Cao, G., Atomistic studies of mechanical properties of graphene, Polymers, 6 (2014) 2404-2432. [2] Lee, C., Wei, X., Kysar, J. W., Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321 (2008) 385-388. [3] Griffith, A. A., The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. London, A221 (1920) 163-198. [4] Hess, P., 2D microscopic model of graphene fracture properties, Mater. Res. Express, 2 (2015) 055601-1-6. [5] Hess, P., Strength of semiconductors, metals, and ceramics evaluated by a microscopic cleavage model with Morse- type and Lennard-Jones-type interaction, J. Appl. Phys., 116 (2014) 053515-1-6. [6] Wagner, P., Ivanovskaya, V. V., Rayson, M. J., Briddon, P. R., Ewels, C. P., Mechanical properties of nanosheets and nanotubes using a new geometry independent volume definition, J. Phys.: Condens. Matter, 25 (2013) 155302-1-22. [7] Hod, O., Graphite and hexagonal boron-nitride have the same interlayer distance. Why?, J. Chem. Theory Comput., 8 (2012) 1360-1369. [8] Terdalkar, S. S., Huang, S., Yuan, H., Rencis, J. J., Zhu, T., Zhang, S., Nanoscale fracture in graphene, Chem. Phys. Lett., 494 (2010) 218-222. [9] Zhang. B., Yang, G., Xu, H., Instability of supersonic crack in graphene, Physica B, 434 (2014) 145-148. [10] Wang, M. C., Yan, C., Ma, L., Hu, N., Chen, M. W., Effect of defects on fracture strength of graphene sheets, Comput. Mater. Sci., 54 (2012) 236-239. [11] Sun, X., Fu, Z., Xia, M., Xu, Y., Effects of vacancy defect on the tensile behavior of graphene, Theor. Appl. Mech. Lett., 4 (2014) 051002-1-5. [12] Khare, R., Mielke, S. L., Paci, J. T., Zhang, S., Ballarini, R., Schatz, G. C., Belytschko, T., Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets, Phys. Rev. B, 75 (2007) 075412-1-12. [13] Gao, H., Ji, B., Jäger, I. L., Arzt, E., Fratzl, P., Materials become insensitive to flaws at nanoscale: Lessons from nature, Proc. Natl. Acad. Sci. USA, 100 (2003) 5597-5600. [14] Zhang, T., Li, X., Kadkhodaei, S., Gao, H., Flaw insensitive fracture in nanocrystalline graphene, Nano Lett., 12 (2012) 4605-4610. [15] Rasool, H. I., Ophus, C., Klug, W. S., Zetti, A., Gimzewski, J. K., Measurement of the intrinsic strength of crystalline and polycrystalline graphene, Nat Commun., 4 (2013) 2811-1-7. [16] Zhang, P., Ma, L., Fan, F., Zeng, Z., Peng, C., Loya, P. E., Liu, Z., Gong, Y., Zhang, J., Zhang, X., Ajayan, P. M., Zhu, T., Lou, J., Fracture toughness of graphene, Nat. Commun., 5 (2014) 3782-1-7. [17] Yin, H., Qi, H. J., Fan, F., Zhu, T., Wang, B., Wei, Y., Griffith criterion of brittle fracture in graphene, Nano Lett., 15 (2015) 1918-1924. [18] Ballarini, R., Kayacan, R., Ulm, F. J., Belytschko, T., Heuer, A. H., Biological structures mitigate catastrophic fracture through various strategies, Int. J. Fract., 135 (2005) 187-197. [19] Jack, R., Sen, D., Buehler, M. J., Graphene nanocutting through nanopatterned vacancy defects, J. Comput. Theor. Nanosci., 7 (2010) 1-6. [20] Daly, M., Reeve, M., Singh, C. V., Effects of topological point reconstructions on the fracture strength and deformation mechanisms of graphene, Comp. Mater. Sci., 97 (2015) 172-180.

RkJQdWJsaXNoZXIy MjM0NDE=