Issue34

M. Kikuchi et alii, Frattura ed Integrità Strutturale, 34 (2015) 318-325; DOI: 10.3221/IGF-ESIS.34.34 325 Figure 13 : Crack growth rates. S UMMARY hree crack growth problems in heterogenous material are simulated using S-version FEM. In two cases, results are compared with experimental ones, and good agreements are obtained. It is verified that S-FEM is powerful tool for these compicated problems. It is also shows that fracture process along phase boundary is also simulated by this method. By careful modeling of phase boundary layer, realistic fracture process in CFRP plate becomes possible. R EFERENCES [1] Belytchko, T,. Lu, Y.Y., Gu, L.,Element Free Galerkin Method, International Journal for Numerical Methods in Engineering, 37 (1994) 229-256. [2] Belytschko, T., Black, T., Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering, 45 (1999) 601-620. [3] Fish, J., Markolefas, S., Guttal, R., Nayak, P., On adaptive multilevel superposition of finite element meshes, Applied Numerical Mathematics, 14 (1994) 135-164. [4] Kikuchi, M., Wada, Y., Takahashi, M., Li, Y., Fatigue Crack Growth Simulation using S-version FEM, Proc. ASME PVP2008, PVP2008-61900. [5] Kikuchi, M., Interacation Evaluation between Two Surface Cracks by Fatigue, Proc. ASME PVP2009, PVP2009- 77073. [6] Kikuchi, M., Maigefeireti, M., Sano, H., Closure Effect on Interaction of Two Surface Cracks under Cyclic Bending, Proc. ASME PVP2010, PVP2010-25241. [7] Kikuchi, M., Wada, Y., Shimizu, Y., Li, Y., Crack growth analysis in a weld-heat-affected zone using S-version FEM, Int. J. PVP, 90-91 (2012) 2-8. [8] Okada, H., Endo, S., Kikuchi, M., On Fracture Analysis using an Element Overlay Technique, Engng. Fracture Mech., 72 (2005) 773-789. [9] Paris, P.C., Erdogan, F., A critical analysis of crack propagation of laws, Trans. ASME Ser. D, (1963) 528-533. [10] Lee, H., Krishnaswamy, S., Quasi-static propagation of subinterfacial cracks , ASME Journal of Applied Mechanics, 67(3) (2000) 444-452. [11] Rybicki, E. F., Kaninen, M.F., A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral, Engng. Fracture Mech., 9 (1977) 931. [12] Konur, O., Matthews, F.L., Effect of the properties of the constituents on the fatigue performance of composites: a review, Composites, 20-4 (1989) 317-328. [13] Wu, C.M.L., Thermal and mechanical fatigue analysis of CFRP laminates, Composite Structures, 25 (1993) 339-344. [14] Kawai, M., Morishita, M., Fuzi, K., Sakurai, T., Kemmochi, K., Effect of matrix ductility and progressive damage on fatigue strength of unnotched and notched carbon fiber plain woven roving fabric laminates, Composites: Part A, 27A (1996) 493-502. [15] JSME S Nal-2004, Codes for Nuclear Power Generation Facilities, (2004), (In Japanese). T

RkJQdWJsaXNoZXIy MjM0NDE=