R. Brighenti et alii, Frattura ed Integrità Strutturale, 34 (2015) 80-89; DOI: 10.3221/IGF-ESIS.34.08 89 [6] Tasora, A., Anitescu, M., A convex complementarity approach for simulating large granular flows, J. Comp. Nonl. Dyn., 5 (2010) 1–10. [7] Rycroft, C.H., Kamrin, K., Bazant, M.Z., Assessing continuum postulates in simulations of granular flow. J. Mech. Phys. Sol., 57 (2009) 828–839. [8] Bui, H.H., Fukagawa, R., Sako, K., Ohno, S., Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. Int. J. Num. An. Meth. Geomech., 32(12) (2008) 1537–1570. [9] Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P., Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 139(1–4) (1996) 3–47. [10] Sukumar, N., Moran, B., Belytschko, T., The natural element method in solid mechanics. Int. J. Num. Meth. Engng, 43(5) (1998) 839–887. [11] Lucy, L.B., A numerical approach to the testing of the fission hypothesis. Astron. J., 82 (1977) 1013–1024. [12] Gingold, R.A., Monaghan, J.J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181 (1977) 375–89. [13] Benz, W., Smooth particle hydrodynamics: a review. In: Numerical Modeling of Non-linear Stellar Pulsation: Problems and Prospects, Kluwer Academic, Boston; (1990). [14] Monaghan, J.J., Why Particle Methods Work. SIAM J. Sci. and Stat. Comput., 3(4) (1982) 422–433. [15] Monaghan, J.J., SPH elastic dynamics. Comput. Methods Appl. Mech. Engrg., 190 (2001) 6641–6662. [16] Oñate, E., Owen, R., Particle-Based Methods: Fundamentals and Applications, Springer, (2011). [17] Curtin, W.A., Miller, R.E., Atomistic/continuum coupling in computational materials science, Model. Simul. Mater. Sci. Eng., 11 (2003) R33–R68. [18] D’Addetta, G.A., Kun, F., Ramm, E., On the application of a discrete model to the fracture process of cohesive granular materials, Granular Matter, 4 (2002) 77–90. [19] Obermayr, M., Dressler, K., Vrettos, C., Eberhard, P., A bonded-particle model for cemented sand, Comp. and Geotechnics, 49 (2013) 299–313. [20] Krivtsov, A., Molecular dynamics simulation of impact fracture in polycrystalline materials, Meccanica, 38 (2003) 61– 70. [21] Aubry, R., Idelsohn, S.R., Oñate, E., Particle finite element method in fluid mechanics including thermal convection- diffusion, Comput. & Struct., 83 (2005) 1459–1475. [22] Brilliantov, N., Spahn, F., Hertzsch, J., Pöshel, T., Model for collision in granular gases, Phys. Rev. E, 53 (1996) 5382–5392. [23] Morse, P.M., Diatomic molecules according to the wave mechanics. II. Vibrational levels, Phys. Rev., 34 (1930) 57– 64. [24] Brighenti, R., Corbari, N., Dynamic behaviour of solids and granular materials: a force potential-based particle method. Int. J. Num. Meth. Engng, (2015) in press (DOI: 10.1002/nme.4998). [25] Verlet, L., Computer Experiments on Classical Fluids. I. Thermodynamical properties of Lennard−Jones molecules, Phys. Rev., 159 (1967) 98–103. [26] Coetzee, C.J., Discrete and continuum modelling of soil cutting, Comp. Part. Mech., 1(4) (2014) 409–423. [27] Travaš, V., Ožbolt, J., Kožar, I., Failure of plain concrete beam at impact load: 3D finite element analysis, Int. J. Fract., 160 (2009) 31–41.