Issue 33
A. Winkler et alii, Frattura ed Integrità Strutturale, 33 (2015) 262-288; DOI: 10.3221/IGF-ESIS.33.32 287 [7] Schiefer, H., Beitrag zur Beschreibung des Zusammenhanges zwischen physikalischer Struktur und technischer Eigenschaft bei amorphem Polystyrol, Technische Hochschule Carl Scherlemmer Leuna-Merseburg, Diss., (1975). [8] Gruenwald, G., Plastics: How Structure Determines Properties, Carl Hanser Verlag, (1993). [9] Erhard, G., Konstruieren mit Kunststoffen, 1. Auflage, Carl Hanser Verlag, (1993). [10] Birley, W. A., Haworth, B., Batchelor, J., Physics of Plastics, Hanser Publishers, (1992). [11] VICTREX Plc., Kristallinität und Morphologie, Company Presentation, Victrex Plc., (2004). [12] Schulz, M. J., Polymer Crystallization, Oxford University Press, (2001). [13] Mandelkern, L., Crystallization of Polymers - Equilibrium Concepts, Cambridge University Press, (2002). [14] Mandelkern, L., Crystallization of Polymers - Kinetics and Mechanisms, Cambridge University Press, (2002). [15] Elias, H-G., Makromoleküle Bd. 2, Wiley VCH Verlag, (2001). [16] Michler, G. H, Baltá-Calleja, F. J. (Eds.), Mechanical Properties of Polymers Based on Nanostructure and Morphology, Taylor & Francis Group, (2005). [17] Hsiung, C., M., Cakmak, M., White, J., L.: Structural Gradients in Injection Molded PPS, International Polymer Processing 5 (1990) 2. [18] Hsiung, C., M., Cakmak, M., White, J., L., Crystallization Phenomena in the Injection Molding of PolyEtherEtherKetone and its Influence on Mechanical Properties, Polymer Engineering and Science 30 (1990). [19] Hsiung, C., M., Cakmak, M.: Computer Simulations of Crystallinity Gradients Developed in Injection Molding of Slowly Crystallizing Polymers, Polymer Engineering and Science, 31 (1991). [20] Hsiung, C., M., Cakmak, M.:, Effect of Processong Conditions on the Structural Gradients in Injection-Molded PAEK Parts - I. Characterization by Microbeam X-Ray Diffraction Technique, Journal of Applied Polymer Science, 47 (1993). [21] Hsiung, C., M., Cakmak, M., Effect of Processong Conditions on the Structural Gradients in Injection-Molded PAEK Parts - II. Large Dumbbell Parts Journal of Applied Polymer Science, 47 (1993). [22] Ulcer, Y., Cakmak, M., Miao, J., Hsiung, C., M., Structural Gradients developed in Injection-Molded Syndiotactic [23] Polystyrene (sPS), Journal of Applied Polymer Science, 60 (1996). [24] Menges, G., Werkstoffkunde der Kunststoffe, Carl Hanser Verlag, (1979). [25] Backhaus, J., Gezielte Qualitätsvorhersage bei thermoplatischen Spritzgußteilen, RWTH Aachen, Diss., (1985). [26] BASF AG (Hrsg.), Konstruieren mit thermoplastischen Kunststoffen 5.93, BASF, (1991). [27] Faatz, P., Tribologische Eigenschaften von Kunststoffen im Modell-und Bauteilversuch, Universität Erlangen- Nuernberg, Diss. (2002). [28] Wübken, G., Einfluss der Verarbeitungsbedingungen auf die innere Struktur thermoplastischer Spritzgussteile unter besonderer Berücksichtigung der Abkühlverhältnisse, RWTH Aachen, Diss., (1974). [29] Osswald, T.A., Menges, G., Materials Science of Polymers for Engineers, Carl Hanser Verlag, (2003). [30] Crawford, R.J., Plastics Engineering, Butterworth-Heinemann, (1998). [31] Forschungskuratorium Maschinenbau (Hrsg.), Rechnerischer Festigkeitsnachweis für Maschinenbauteile aus Stahl, Eisenguss- und Aluminiumwerkstoffen, VDMA Verlag, (2003). [32] Taylor, D., The Theory of Critical Distances: A New Perspective in Fracture Mechanics, Elsevier Science, (2007). [33] Susmel, L., Multiaxial Notch Fatigue, Woodhead Publishing, (2009). [34] Kanvinde, A.M., Deierlein, G.G., Void Growth Model and Stress Modified Critical Strain Model to Predict Ductile Fracture in Structural Steels, Journal of Structural Engineering, December (2006). [35] Kanvinde, A.M., Deierlein, G.G., Cyclic Void Growth Model to Assess Ductile Fracture Initiation in Structural Steels due to Ultra Low Cycle Fatigue, Journal of Engineering Mechanics, June (2007). [36] Kanvinde, A.M., Deierlein, G.G., Validation of Cyclic Void Growth Model for Fracture Initiation in Blunt Notch and Dogbone Steel Specimens, Journal of Structural Engineering, September (2008). [37] Cravero, S., Demarco, D., Klein, F., Ernst, H., Ultra low cycle fatigue evaluation in notched geometries, Proc. of LCF7 – Seventh International Conference on Low Cycle Fatigue, Aachen, (2013). [38] Michler, G.H., Kunststoff-Mikromechanik, Carl Hanser Verlag, (1998). [39] Kausch, H.H. (Ed.), Crazing in Polymers, Springer Verlag, (1983). [40] Kausch, H.H. (Ed.), Crazing in Polymers, Springer Verlag, 2 (1990). [41] Michler, G.H., Electron Microscopy of Polymers, Carl Hanser Verlag, (1998). [42] Böhme, E., Failure Analysis using Microscopic Techniques, DuPont Engineering Polymers, Geneva, (1990). [43] Baehr, H.D., Thermodynamik: Grundlagen und technische Anwendungen, Springer Verlag, (2005). [44] Shaw, T.M., MacKnight, W.J., Introduction to Polymer Viscoelasticity, John Wiley & Sons, (2005). [45] DuPont de Nemours and Company, General Design Principles for DuPont Engineering Polymers, Geneva, (1995).
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=