Issue 30

V. Crupi et alii, Frattura ed Integrità Strutturale, 30 (2014) 569-577; DOI: 10.3221/IGF-ESIS.30.68 577 [28] Murakami, Y., Nomoto, T., Ueda, T., Murakami, Y., On the mechanism of fatigue failure in the superlong life regime (N>10 7 cycles). Part I: Influence of hydrogen trapped by inclusions, Fatigue Fract. Engng. Mater. Struct., 23 (2000) 893-902. [29] Murakami, Y., Toriyama, T., Tsubota, K., Furumura, K., What Happens to the Fatigue Limit of Bearing Steel without Nonmetallic Inclusions?: Fatigue Strength of Electron Beam Remelted Super Clean Bearing Steel, Bearing Steels, In: the 21st Century, ASTM STP 1327, J. J. C. Hoo, W. B. Green (Eds.), American Society for Testing and Materials, Philadelphia (1998) 87–105. [30] Li, W., Yuan, H., Sun, Z., Zhang, Z., Surface vs. interior failure behaviors in a structural steel under gigacycle fatigue: Failure analysis and life prediction”, Int. J. of Fatigue, 64 (2014) 42–53. [31] Bathias, C., Paris, P.C., Gigacycle fatigue in mechanical practice, Marcel Dekker, New York (2005).

RkJQdWJsaXNoZXIy MjM0NDE=