Issue 30

L. Guerra Rosa et alii, Frattura ed Integrità Strutturale, 30 (2014) 438-445; DOI: 10.3221/IGF-ESIS.30.53 445 proposed in this paper is based on the probabilistic modelling of the complex behaviour of glass fracture but avoids the complexity for calculation in applications. With demonstrative examples, it is shown that the procedure is effective for analyzing the fracture problem of the glass components and helpful for design improvement. A CKNOWLEDGEMENTS he authors gratefully acknowledge the financial support from the EU Integrated Research Programme in the field of Concentrated Solar Power (CSP) named “Scientific and Technological Alliance for Guaranteeing the European Excellence in Concentrating Solar Thermal Energy (STAGE-STE)”. R EFERENCES [1] Feldmann, M., Kasper, R., Guidance for European structural design of glass components, Scientific and Policy Report by the Joint Research Centre of the European Commission, (2014). [2] Santarsiero, M., Froli, M., A contribution to the theoretical prediction of life-time in glass structures, Journal of the International Association for Shell and Spatial Structures, 52(4) (2011) 225-231. [3] Sutherland, K.K., An engineer’s guide to refined glass strength forecasting, AIAA 2009-2582, 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 4 - 7 May 2009, Palm Springs, California. [4] Haldimann, M., Fracture strength of structural glass elements–analytical and numerical modelling, testing and design, Ph.D. thesis, EPFL, Lausanne, (2006). [5] Doyle, K.B., Kahan, M.A., Design strength of optical glass, In: Proceedings of SPIE, Optomechanics 2003, San Diego, California. International Society for Optical Engineering (SPIE), Bellingham, Washington, (2003) 14-25. [6] Porter, M., Aspects of structural design with glass, Ph.D Thesis, University of Oxford, (2001). [7] Brown, W., A load duration theory for glass design, Publications of National Research Council of Canada, Division of Building Research, NRCC 12354, Ottawa, Ontario, Canada, (1972) 515-524. [8] Charles, R., Hilling, W., The kinetics of glass failure by stress corrosion, In: Symposium on mechanical strength of glass and ways of improving it, Belgium (1962). [9] Weibull, W., A statistical distribution function of wide applicability, Journal of Applied Mechanics, 18 (1951) 293-297. [10] Evans, A.G., Wiederhorn, S., Proof testing of ceramic materials - analytical basis for failure prediction, International Journal of Fracture, 10(3) (1974) 379-392. [11] Fishchercripps, A., Collins, R., Architectural glazing: design standard and failure models, Building and Environment, 30 (1995) 29-40. [12] Fernandes, J.J., Silva, C.P., Guerra Rosa, L., Estatística de Weibull aplicada à Resistência Mecânica de Materiais Cerâmicos, In: Actas "MATERIAIS 89"-IV Encontro Nacional da Sociedade Portuguesa de Materiais, Coimbra, I (1989) 55-66. [13] Fernandes, J.J., Guerra Rosa, L., Ensaios Biaxiais de Cerâmicos, In: Actas do V Encontro da S.P.M., Materiais 91 1 (1991) 375-384. [14] Santos Moreira, J., Guerra Rosa, L., Osório, A.M.B.A., Avaliação da Resistência Mecânica de Varetas e Fibras de Vidro de Sílica, In: Actas do V Encontro da S.P.M., Materiais 91, 2 (1991) 539-548. [15] Santos Moreira, J., Guerra Rosa, L., Osório, A.M.B.A., Ensaios de Resistência Mecânica de Varetas de Vidro de Sílica – Comparação entre a resistência Mecânica Medida por meio de Ensaio de Tracção e Ensaios de Flexão em 2, 3 e 4 Pontos, In: Actas das IV Jornadas de Fractura da S.P.M., Lisboa, Portugal, (1991) 1-12. [16] Guerra Rosa, L., Cruz Fernandes, J., Alexandrino Duarte, I., Subcritical crack growth in three engineering ceramics under biaxial conditions, In: Proceedings of ECF12 – Fracture from Defects, Sheffield, UK, (1998) 509-514 [17] Thiemeier, T., Bruckner-Foit, A., Influence of the fracture criterion on the failure prediction of ceramics loaded in biaxial flexure, Journal of American Ceramics Society, 74(1) (1991) 48-52. [18] Danzer, R., Harrer, W., Supancic, P., Lubea, T., Wang, Z., Borger, A., The ball on three balls test-Strength and failure analysis of different materials, Journal of the European Ceramic Society, 27 (2007) 1481–1485. [19] Weibull, W., A Statistical Theory for the Strength of Materials," Technical Report No. 151, Swedish Royal Institute for Engineering Research, Stockholm (1939). [20] Johnson, K. L., Contact Mechanics, Cambridge University Press, Cambridge, UK (1985). T

RkJQdWJsaXNoZXIy MjM0NDE=