Issue 30

A. Carofalo et alii, Frattura ed Integrità Strutturale, 30 (2014) 349-359; DOI: 10.3221/IGF-ESIS.30.42 359 [10] Roy, A.K., Venkatesh, A., Marthandam, V., Ghosh, A., Tensile deformation of a Nickel-base Alloy at elevated temperatures, Journal of Material Engineering and Performance, 17(4) (2008) 607-611. [11] Li, Z., Gobbi, S.L., Loreau, J.H., Laser welding of Waspaloy sheets for aero-engines, Journal of Mat Processing Tech, 65 (1997) 183-190. [12] Chamanfar, A., Jahazi, M., Gholipour, J., Wanjara, P., Yue, S., Mechanical property and microstructure of linear friction welded Waspaloy, Metallurgical and Materials Transactions A, 42 (2011) 729-744. [13] Huang, Z.W., Li, H.Y., Preuss, M., Karadge, M., Bowen, P., Bray, S., Baxter, G., Metall. Mater. Trans. A, 38A (2007) 1608–20. [14] Adam, P., Welding of High Strength Gas Turbine Alloys, Applied Science Publisher Ltd., London, (1978) 737–68. [15] Vishwakarma, K.R., Richards, N.L., Chaturvedi, M.C., In: 6th Int. Symp. on Superalloys 718, 625, 706 and Derivatives, E.A. Loria, ed, TMS, Pittsburgh, PA, 2005, 637–47. [16] Sekhar, N.C., Reed, R.C., Power beam welding of thick section nickel base superalloys, Sci. Technol. Weld. Join., 7 (2002) 77–87. [17] Ma, T.J., Li, W.Y., Xue, Q.Z., Zhang, Y., Li, J.L., Yang, S.Q., Mater. Sci. Forum, 580–582 (2008) 405–408. [18] Oja, M., Ravi Chandran, K.S., Tryon, R.G., Orientation imaging microscopy of fatigue crack formation in Waspaloy: crystallographic conditions for crack nucleation, International Journal of Fatigue, 32 (2010) 551–556. [19] Warren, J., Wei, D.Y., A microscopic stored energy approach to generalize fatigue life stress ratios, Int. Journal of Fatigue, 32 (2010) 1853-1861. [20] Morrow, J., Cyclic Plastic Strain Energy and Fatigue of Metals, Internal Friction, Damping, and Cyclic Plasticity, ASTM STP 378, Philadelphia PA, (1965) 45-84. [21] Leis, B.N., An Energy-Based Fatigue and Creep-Fatigue Damage Parameter, J Press Ves Tech Trans ASME, 99 (1977) 524–533.

RkJQdWJsaXNoZXIy MjM0NDE=