Issue 30

D. Tumino et alii, Frattura ed Integrità Strutturale, 30 (2014) 317-326; DOI: 10.3221/IGF-ESIS.30.39 325 was obtained from the flexural tests of the beam samples, performed at various span values. Adding the transverse shear rigidity in the formulation of the shell element has allowed the homogenised model to well predict all the experimental results. A number of future developments are then identified in order to complete the potentialities and effectiveness of the presented homogenised model. These developments comprise: the analytical formulation of the transverse shear rigidity; the experimental validation of the membrane behaviour of the homogenised model; the extension of the model to cases where the skin and core laminates have different lay-ups. A PPENDIX In-plane elastic stiffness of the sandwich can be stated as follows:   * 2 x x s c E E t A   (A.1)     * * * *2 2 2 2 2 2 mx my s s c y x s x c x xy yx s c my s xy E E t t A E E t E A E t A E t              (A.2) where A c is the area, per unit width, of the corrugation cross section, * ij  are in-plane Poisson coefficients of the laminate. R EFERENCES [1] Zenkert, D., An introduction to sandwich construction, London, Chameleon Press, (1995). [2] Davies, J.M., Lightweight Sandwich Construction, Wiley-Blackwell, (2001). [3] Mangino, E., Carruthers, J., Pitarresi, G., The future use of structural composite materials in the automotive industry, Int J Veh Des, 44(3-4) (2007) 211-32. [4] Ingrassia, T., Alaimo, G., Cappello, F., Mancuso, A., Nigrelli, V., A new design approach to the use of composite materials for heavy transport vehicles, International Journal of Vehicle Design, 44 (3-4) (2007) 311-325. [5] http://www.transport-research.info/web /, (2014). [6] Tumino, D., Cappello, F., Simulation of fatigue delamination growth in composites with different mode mixtures, Journal of Composite Materials, 41(20) (2007) 2415-2441. [7] Tumino, D., Zuccarello, B., Fatigue delamination experiments on GFRP and CFRP specimens under single and mixed fracture modes, Procedia Engineering, 10 (2011) 1791-1796. [8] Pitarresi, G., Alessi, S., Tumino, D., Nowicki, A., Spadaro, G., Interlaminar fracture toughness behavior of electron- beam cured carbon-fiber reinforced epoxy-resin composites, Polymer Composites 35(8) (2014) 1529-1542. [9] Spadaro, G., Alessi, S., Dispenza, C., Sabatino, M.A., Pitarresi, G., Tumino, D., Przbytniak, G., Radiation curing of carbon fibre composites, Radiation Physics and Chemistry, 94(1) (2014) 14-17. [10] Ye Z, Berdichevsky VL, Yu W. An equivalent classical plate model of corrugated structures, Int J Solids Structures, 51(11-12) (2014) 2073-2083. [11] Richardson, M.O.W., Robinson, A.M., Eichler, K. and C. Moura Branco, C., Mechanical behaviour of a new stress dissipating composite sandwich structure, Cellular Polymers, 13 (1994) 305-317. [12] Found, M.S., Robinson, A.M., Carruthers, J.J., The influence of FRP inserts on the energy absorption of a foam- cored sandwich panel, Composite Structures, 38(1-4) (1997) 373-381. [13] http://cordis.europa.eu/result/rcn/25868_en.html , (2014). [14] Torre, L., Kenny, J.M., Impact testing and simulation of composite sandwich structures for civil transportation, Composite Structures, 50(3) (2000) 257-267. [15] Pitarresi, G., Carruthers, J.J., Robinson, A.M., Torre, G., Kenny, J.M., Ingleton, S., Velecela, O., Found, M.S., A comparative evaluation of crashworthy composite sandwich structures, Composite Structures, 78(1) (2007) 34-44. [16] Jin, F., Chen, H., Zhao, L., Fan, H., Cai, C., Kuang, N., Failure mechanisms of sandwich composites with orthotropic integrated woven corrugated cores: Experiments, Composite Structures, 98 (2013) 53-58. [17] Pitarresi, G., Amorim, J., Indentation of rigidly supported sandwich beams with foam cores exhibiting non-linear compressive behaviour, Journal of Sandwich Structures and Materials, 13(5) (2011) 605-636.

RkJQdWJsaXNoZXIy MjM0NDE=