Issue 27
A. Brotzu et alii, Frattura ed Integrità Strutturale, 27 (2014) 66-73; DOI: 10.3221/IGF-ESIS.27.08 73 [11] Lapin, J., Gabalcová, Z., Solidification behaviour of TiAl-based alloys studied by directional solidification technique, Intermetallics, 19 (2011) 797-804. [12] Wu, X., Review of alloy and process development of TiAl alloys, Intermetallics, 14 (2006) 1114-1122. [13] Jarvis, D.J., Voss, D., IMPRESS Integrated Project-An overview paper, Mat. Sci. Eng. A-Struct. , 413–414 (2005) 583- 591. [14] Vajpai, S. K., Ameyama, K., A novel powder metallurgy processing approach to prepare fine-grained Ti-rich TiAl- based alloys from pre-alloyed powders, Intermetallics, 42 (2013) 146-155. [15] Brotzu, A., Felli, F., Pilone, D., Fracture behaviour of cast TiAl based intermetallic alloys, in: F. Iacoviello, G. Risitano, L. Susmel, XXII Convegno Nazionale IGF, Roma, Italy, (2013) 66-72. [16] Gomes, F., Puga, H., Barbosa, J., Ribeiro, C.S., Effect of melting pressure and superheating on chemical composition and contamination of yttria-coated ceramic crucible induction melted titanium alloys, J. Mater. Sci., 46 (2011) 4922- 4936. [17] Yanqing, S., Jingjie, G., Jun, J., Guizhong, L., Yuan, L., Composition control of a TiAl melt during the induction skull melting (ISM) process, J. Alloy. Compd., 334 (2002) 261-266. [18] Guo, J., Liu, G., Su, Y., Ding, H., Jia, J., Fu, H., The critical pressure and impeding pressure of Al evaporation during induction skull melting processing of TiAl, Metall. Mater. Trans. A, 33 (2002) 3249-3253. [19] Chen, Y., Niu, H., Kong, F., Xiao, S., Microstructure and fracture toughness of a β phase containing TiAl alloy, Intermetallics, 19 (2011) 1405-1410.
Made with FlippingBook
RkJQdWJsaXNoZXIy MjM0NDE=