Issue 27

P. Hou et alii, Frattura ed Integrità Strutturale, 27 (2014) 21-27; DOI: 10.3221/IGF-ESIS.27.03 27 Int J Fatigue, 24 (2002) 11-19. [7] Crupi, V., Chiofalo, G., Guglielmino, E., Using infrared thermography in low-cycle fatigue studies of welded joints, Weld J, 89 (2010) 195s-200s. [8] La Rosa, G., Risitano, A., Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components, Int J Fatigue, 22(1) (2000) 65-73. [9] Kim, J., Jeong, H. Y., A study on the hysteresis, surface temperature change and fatigue life of SM490A, SM490A- weld and FC250 metal materials, Int J Fatigue, 32 (2010) 1159-1166. [10] Cura, F., Curti, G., Sesana, R., A new iteration method for the thermographic determination of fatigue limit in steels. Int J Fatigue, 27 (2005) 453-459. [11] Meneghetti, G., Analysis of the fatigue strength of a stainless steel based on the energy dissipation, Int J Fatigue, 29(1) (2007) 81-94. [12] Pastor, M. L., Balandraud, X., Grediac, M., et al., Applying infrared thermography to study the heating of 2024-T3 aluminium specimens under fatigue loading, Infrared Phys. Techn., 51 (2008) 505-515. [13] Fan, J. L., Guo, X. L., Wu, C. W., et al., Research on fatigue behavior evaluation and fatigue fracture mechanisms of cruciform welded joints, Mater Sci Eng A, 528 (2011) 8417-8427. [14] Fan, J. L., Guo, X. L., Wu, C. W., Fatigue performance assessment of welded joints using the infrared thermography, Struct Eng Mech, 44(4) (2012) 417-429. [15] Ummenhofer, T., Medgenberg, J., On the use of infrared thermography for the analysis of fatigue damage processes in welded joints, Int J Fatigue, 31 (2009) 130-137. [16] Risitano, A., Risitano, G., Cumulative damage evaluation of steel using infrared thermography, Theor Appl Fract Mech, 54(2) (2010) 82-90. [17] Risitano, A., Corallo, D., Risitano, G., Cumulative damage by Miner's Rule and by Energetic Analisys, Struct Durability Health Monitor, 8(2) (2012) 91-109. [18] Risitano, A., Risitano, G., Cumulative damage evaluation in multiple cycle fatigue tests taking into account energy parameters, Int J Fatigue, 48 (2013) 214-222. [19] Nalla, R. K., Altenberger, I., Noster, U., et al. On the influence of mechanical surface treatments-deep rolling and laser shock peening-on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures, Mater Sci Eng A, 355 (2003) 216-230. [20] Boulanger, T., Chrysochoos, A., Mabru, C., et al., Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels, Int J Fatigue, 26 (2004) 221-229. [21] Lanning, D. B., Nicholas, T., Haritos, G. K., On the use of critical distance theories for the prediction of the high cycle fatigue limit stress in notched Ti-6Al-4V, Int J Fatigue, 27(1) (2005) 45-57.

RkJQdWJsaXNoZXIy MjM0NDE=