numero25

J. Toribio et alii, Frattura ed Integrità Strutturale, 25 (2013) 130-137; DOI: 10.3221/IGF-ESIS.25.19 136 [3] Louat, N., Sadananda, K., Duesbery, M., Vasudevan, A. K., A theoretical evaluation of crack closure, Met. Trans., A24 (1993) 2225-2232. [4] Vasudevan, A. K., Sadananda, K., Glinka, G., Critical parameters for fatigue damage, Int. J. of Fatigue, 23 (2001) S39- S53. [5] Elber, W., Fatigue crack growth under cyclic tension, Eng. Fract. Mech., 2 (1970) 37-45. [6] Macha, D. E., Corbly, D. M., Jones, J. W., On the variation of fatigue-crack-opening load with measurement location, Exp. Mech., 19 (1979) 207-213. [7] Xu Yigeng, Gregson, P. J., Sinclair, I., Systematic assessment of compliance-based crack closure measurements in fatigue, Mater. Sci. and Eng., A284 (2000) 114-125. [8] Deshpande, V. S., Needleman, A., van der Giessen, E., A discrete dislocation analysis of near-threshold fatigue crack growth, Acta Mater., 49 (2001) 3189-3203. [9] Pippan, R., Riemelmoser, F. O., Visualization of the plasticity-induced crack closure under plane strain conditions, Eng. Fract. Mech., 60 (1998) 315-322. [10] Bjerkén, C., Melin, S., Growth of a short fatigue crack – A long term simulation using a dislocation technique, Int. J. of Solids and Struct., 46 (2009) 1196-1204. [11] Budiansky, B., Hutchinson, J. W., Analysis of closure in fatigue crack growth, J. of Appl. Mech., 45 (1978) 267-276. [12] Noroozi, A. H., Glinka, G., Lambert, S., Prediction of fatigue crack growth under constant amplitude loading and a single overload based on elasto-plastic crack tip stresses and strains, Eng. Fract. Mech., 75 (2008) 188-206. [13] McClung, R. C., Thacker, B. H., Roy, S., Finite element visualisation of fatigue crack closure in plane stress and plane strain, Int. J. of Fract., 50 (1991) 27-49. [14] Toribio, J., Kharin, V., Large crack-tip deformations and plastic crack advance during fatigue, Mater. Lett., 61 (2007) 964-967. [15] Ellyin, F., Wu, J., Elastic-plastic analysis of a stationary crack under cyclic loading and effect of overload, Int. J. of Fract., 56 (1992) 189-208. [16] Wu, J., Ellyin, F., A study of fatigue crack closure by elastic-plastic finite element for constant-amplitude loading, Int. J. of Fract., 82 (1996) 43-65. [17] Levkovitch, V., Sievert, R., Svendsen, B., Simulation of fatigue crack propagation in ductile metals by blunting and re- sharpening, Int. J. of Fract., 136 (2005) 207-220. [18] Toribio, J., Kharin, V., High-resolution numerical modelling of stress-strain fields in the vicinity of a crack tip subjected to fatigue, Fracture from Defects, EMAS, (1998) 1059-1064. [19] Toribio, J., Kharin, V., Role of fatigue crack closure stresses in hydrogen assisted cracking, Advances in Fatigue Crack Closure Measurement and Analysis, ASTM STP 1343, R.C. McClung, J.C. Newman, Eds., ASTM International, West Gonshohocken, (1999) 440. [20] Toribio, J., Kharin, V., Finite deformation analysis of the crack-tip fields under cyclic loading, Int. J. of Solids and Struct., 46 (2009) 1937-1952. [21] Roychowdhury, S., Dodds, R. H., A numerical investigation of 3-D small-scale yielding fatigue crack growth, Eng. Fract. Mech., 70 (2003) 2363-2383. [22] Tvergaard, V., On fatigue crack growth in ductile materials by crack-tip blunting, J. Mech. and Phys. of Solids, Vol. 52, 2004, pp. 2149-2166. [23] Tvergaard, V., Overload effects in fatigue crack growth by crack-tip blunting, Int. J. of Fatigue, 27 (2005) 1389-1397. [24] Lei, Y., Finite Element crack closure analysis of a compact tension specimen, Int. J. of Fatigue, 30 (2008) 21-31. [25] Lynn, A. K., DuQuesnay, D. L., Computer simulation of variable amplitude fatigue crack initiation behaviour using a new strain-based cumulative damage model, Int. J. of Fatigue, 24 (2002) 977-986. [26] Nguyen, O., Repetto, E., Ortiz, M., Radovitzky, R., A cohesive model of fatigue crack growth, Int. J. of Fract., 110 (2001) 351-369. [27] Chalant, G., Remy, L., Model of fatigue crack propagation by damage accumulation at the crack tip, Eng. Fract. Mech., 18 (1983) 939-952. [28] Chan, K. S., Lankford, J., A crack tip strain model for the growth of small fatigue cracks, Scripta Met., 17 (1983) 529- 532. [29] Fan, F., Kalnaus, S., Jiang, Y., Modelling of fatigue crack growth of stainless steel 304L, Mech. of Mater., 40 (2008) 961-973. [30] Hurtley, P. J., Evans, W. J., A new method for predicting fatigue crack propagation rates, Mater. Sci. and Eng., A466 (2007) 265-273. [31] Laird, C., Smith, G. C., Crack propagation in high stress fatigue, Phil. Mag., 8 (1962) 847-857.

RkJQdWJsaXNoZXIy MjM0NDE=