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ABSTRACT 
Recently, various methods have been proposed to assess the risk of Rolling Contact Fatigue 
failure by Ekberg, Kabo and Andersson, and in particular, the Dang Van multiaxial fatigue 
criterion has been suggested in a simple approximate formulation. In a recent note by 
Ciavarella and Maitournam, it was found that the approximation implied can be very 
significant. Here, a much larger range of conditions is given, partial slip conditions are 
considered and analytical formulae are also derived.  

 
 

1. INTRODUCTION 
Rolling Contact Fatigue (RCF) occurs in railways, but also in gears and rolling bearings, and 
many other mechanical applications. It has various forms (plastic deformations, macro- and 
micro-pitting, spalling, crack initiation from inclusions, etc.) and is generally interacting with 
other forms of surface damage, and in particular wear. Recently, Ekberg, Kabo and Andersson 
[1], EKA in the following, have suggested three independent indexes: the first (surface-
initiated fatigue) derives from the classical approach based on plasticity theory, shakedown 
and ratchetting, as described for example in Johnson’s book ([2], Ch.9), and hence requires an 
understanding of material properties related to (cyclic) yield and ratcheting, but even though 
advanced FEM plasticity models can quite efficiently steady state responses (if there is one) 
directly [3,4], the ratchetting response modelling remains today one of the most complex in 
plasticity theory, and even the classical results by Johnson have recently found to be wrong 
[5,6,7]. Indeed, according to Dang Van [8], even if fatigue limit may be shakedown at grain, 
so called “mesoscopic”, level, fatigue properties of materials are generally directly measured 
from experiments, rather than extrapolated from plasticity constants which perhaps would be 
a lot faster and cheaper to obtain. Hence, Dang Van’s criterion uses shakedown theories only 
to evaluate the effect of multiaxiality of the stress cycle by making assumptions on the 
relationship between macroscopic and microscopic stresses. 
 
As a second criterion, EKA suggest considering for subsurface initiated fatigue a very simple 
approximate calculation of the Dang Van criterion, and they show that in pure rolling, in the 
absence of  residual stresses, does not depend greatly on the hydrostatic pressure term, and 

obtained their eq. (11), 
2
maxτ

σ =eq . Applying this result for the 2D pure rolling problem for 

which 0max 3.0 p=τ  ([2], 4.47), where p0 is the Hertzian peak pressure, and this would give 



( ) 67.63.0/2/ lim0 =≈ep τ , where eτ  is the endurance limit under pure shear (torsion). If we 
consider the in-plane shear stress, then 0max 25.0 p=τ  and ( ) 825.0/2/ lim0 =≈ep τ . A detailed 
calculation considering the full 3D state of stress in the plane strain problem and the full 
DangVan criterion, using Poisson’s ratio 0.3, has been completed in [9]. Their Fig.1 shows 
the results for the line contact problem using the frictionless stress distribution of the Hertz 
solution [2], as a function of the material constant DVa , varying between 0 (when 2/ =ee τσ ) 
and 1.5 (when 1/ =ee τσ ).  It is found that, contrary to what was suggested by EKA, there is a 
significant effect of the DangVan constant DVa  (i.e. of the hydrostatic component) since the 
obtained range of limit is ( ) 2.94/ lim0 −≈ep τ . The effect of frictional tractions is considered, 
in full sliding. EKA suggest adding a quadratic decay of the limit with the friction coefficient, 
but again this is found to be a strong and inaccurate approximation. It appears that very hard 
material resists a lot better under pure compressive (frictionless) rolling, than under frictional 
rolling (where there are tensile stresses). This is not particularly surprising, and qualitatively 
in agreement with gears design standard such as BS ISO 6336-2 [10] or ANSI/AGMA 2001-
B88 [11] for pitting resistance of gears, for which materials such as gray cast iron have a lot 
higher value of recommended pressure than bending stress. The typical ratio between pitting 
fatigue limit pressure and uniaxial bending fatigue limit varies between 1.5 and 5-6, and 
therefore although the design practice evidently takes account of many factors and is 
essentially empirical, the ratio seems to be of the same order of magnitude as the Dang Van 
criterion applied here.  
 
In the present paper, a larger range of conditions is considered than in [9]. Firstly, the full 
range of Poisson’s ratio is considered in pure rolling, then the entire range of partial slip 
conditions using Carter’s solution and finally, some analytical formulae are derived.  
 
 
2. DANG VAN ALGORITHM 
According to Melan’s theorem if a system will shakedown, a time-invariant residual stress 
tensor must exist, that, together with elastic stresses due to the load, gives a resulting state of 
stress under the elastic limit. If one can estimate this residual stress tensor ρ  , the state of 
stress kσ  (microscopic state of stress) can be calculated as 
 
 ρσ +Σ= kk   (1) 
being kΣ the bulk stress tensor, and k the k-th time step. If we decompose both stress states 
into hydrostatic and deviatoric terms 
 kkk sp +=σ  (2) 

 kkk SP +=Σ  (3) 
where kk Pp ,  are the hydrostatic terms, and kk Ss ,  the deviatoric ones, and if we consider 

kk Pp = , because yielding is affected by deviatoric terms only, equation (1) can be written as 

 )(ρdevSs kk +=  (4) 
Von Mises’ yield criterion is adopted for the microscopic stresses: 

 ( ) 2222222
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being K the “yield stress” of the given material at microscopic level. This condition makes it 
possible to find numerically the deviatoric residual stress tensor, because in a six dimensional 

space with axes xzyzxy
zzyyxx SSSSSS

,,,
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,
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,
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 eq.(5) represents the smallest hypersphere 

circumscribing the entire load path, centred at )(ρdev− , as can be inferred substituting eq.(4) 
in eq.(5). The algorithm is the following: 
 

1. Divide the load path into N discrete time steps, with suitably large N. 
2. An initial value for )(ρdev−  is chosen; the centroid of load path is 

appropriate: ∑
=

⋅=−
N

k
kS

N
dev

1
0

1)(ρ . 

3. Choose an initial small value R0 for the radius of the hypersphere, for example 
R0=0.01. 

4. Calculate the distance of the point kS  in the load path from the centre 

)( 1−− kdev ρ , that is to say calculate the radius of the hypersphere on which the 

point ks  lies: ))(()( 122 −+= kkk devSJsJ ρ . 

5. Verify that kS  lies within the hypersphere: 0.0))(( 112 ≤−+ −− kkk RdevSJ ρ . If 
it is so, radius and centre of hypersphere rest unchanged and go to step 8; 
otherwise go to step 6. 

6. Increase radius: ))(( 121 −− +⋅+= kkkk devSJRR ρχ , a suitable value for χ is 
0.05. 

7. Move the centre of the hypersphere so that the point kS lies on the surface of 
the enlarged hypersphere: 
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8. Go to the next load point, k=k+1; go to step 4. 
 
When all load points have been analysed, a second loop takes place on the whole load cycle, 
starting from step 4, and using as initial values for the radius and the centre the last ones 
obtained from the first loop. Iterations go on till the centre of the hypersphere rests unchanged 
on the entire load cycle, i.e. its variation is smaller than a prefixed tolerance, for example 10-5. 
Dang Van’s criterion can then be written as follows: 
 ekkkeqv spss τατσ ≤⋅+= )()()( max  (6) 

with 
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α , and s1k and s3k are the maximum and 

minimum principal stress of ks  respectively, ee τσ ,  are the fatigue amplitude limits under 
pure bending and pure torsion for a given material. When condition in eq.(6) is not respected, 
a fatigue crack will nucleate under cyclical load. 
 
 
 
 



3. FREE ROLLING 
Free rolling about the y axis of a cylindrical body induces the plane strain Hertzian stress field 
in xz, which has the form: 
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The stress cycle is evaluated as variation in the rolling motion of x/a coordinate varying 
between -5 and 5, with 200 subdivisions, and z/a between 0 and 1, with 150 subdivisions; a is 
the half width of contact area. At the interface Hertzian pressure distribution 

 11,1
2

0 ≤≤−

















−⋅=

a
x

a
xpp  (8) 

all all stresses are normalized with p0. 

  
Figure 1: Coordinate system for the rolling problem. 
 
 
According to eq.(6), at the fatigue limit  
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Naturally, this calculation is repeated for all possible depths and the limit cycle is found when 
the highest of all eq.9 is found. This paper will show some results on the fatigue limit ratio 

e

p
τ

0  as a function of material properties, i.e. Poisson’s ratio ν and constant α. Fig 2 shows the 

fatigue limit ratio for free rolling and the depth where the most severe cycle is localized. 
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Figure 2: The fatigue limit ratio for free rolling and location of the limit cycle, and 
comparison with analytical equation (15). 
 
 
For α =0.0, the limit ratio is 4, and the mean depth is 0.5, independently from Poisson’s ratio. 
The damage is caused by microscopic maximum shear stress only, hydrostatic stress does not 

give any beneficial contribution, and the maximum of 
0

max )(
p

sτ
 is localized at 85.0m=

a
x  (see 

Fig.3) and it is equal to the maximum shear stress 
0p

xzτ
=0.25. A good analytical form for this 

case is 
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. When α > 0.0, the limit ratio 
e

p
τ

0  is strongly affected by 

the beneficial presence of hydrostatic component. For large enough α, the most severe cycles 
are on the surface, so the following considerations can be carried out. The surface state of 
stress is represented by this stress tensor:  
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and the normalized deviatoric tensor   
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By the substitution 
2

1 
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a
xt k ,when 1≤

a
xk , this represents a line in the three 

dimensional space, that is the load path in the deviatoric form. The centre of the minimum 
sphere encompassing the load path is easy to find, because it is the medium point: 
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Microscopic tensions result from the difference of the corresponding components of (12,13) 

respectively. The maximum ratio of peak Hertzian pressure and eτ  is reached at 1m=
a
xk , due 

to the symmetry of load history. So the microscopic stresses are obtained taking 0=t :
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The microscopic maximum shear stress is 
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which is independent from the material constant α.  

 
Figure 3: The fatigue limit ratio for free rolling and location of the limit cycle, as in Fig.2, 
but with different choice of x axis. 



The approximation is good up to ν = 0.2 better for large α. In figure 3, the variation of fatigue 
limit ratio and the corresponding depth with α are plotted. 
 
 
4 . TRACTIVE ROLLING 
Frictional rolling contact for cylindrical bodies is plane strain is given by Carter’s solution 
(see Johnson, 1985), given by the superposition of stresses due to Hertzian pressure and 
tangential tractions on the surface. These are calculated by a linear combination of surface 
tangential tractions in the sliding contact problem: 
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where d is the offset from the centre toward the leading edge of the contact area, and it is 

related to c: 
P

Q
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a
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being Qx and P the resultants of surface tangential tractions along x axis and Hertzian 
pressure, respectively, and µ the friction coefficient. With the same grid of points of the 

frictionless problem, graphs of 
e

p
τ

0  are plotted, taking into account two more parameters: 

P
Qx

⋅µ
 and µ. The following figures show 

e

p
τ

0  versus µ for different α and the depths of the 

most severe cycles; only some values for ν and 
P

Qx

⋅µ
 are considered, for space limitations. 

 

Figure 4: The fatigue limit ratio in full sliding (
P

Qx

⋅µ
=1) and location of limit cycle, ν=0.5. 

 



 

Figure 5: The fatigue limit ratio in partial slip (
P

Qx

⋅µ
=0.5) and location of limit cycle, ν=0.5. 

 

Figure 5: The fatigue limit ratio in full slip (
P

Qx

⋅µ
=1) and location of limit cycle, ν=0.3. 

 

Figure 6: The fatigue limit ratio in partial slip (
P

Qx

⋅µ
=0.5) and location of limit cycle, ν=0.3. 

 



For sufficiently large friction and Dang Van’s constant, the fatigue limit is reached on surface, 
and the highest )( keqv sσ , according to Dang Van’s criterion, is at x/a = -1, where the biaxial 
state of stress is: 
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Hence, 0.0)1( =−=
a
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a
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zσ , the Hertzian pressure being null on the leading 

edge. The hydrostatic tension is 
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In full slip, 0.1=
⋅ P

Qx

µ
, there is no significant difference between nominal and microscopic 

tensions because the residual stress tensor is negligible. Microscopic and nominal maximum 
shear stress are very similar, so a simplified formulation of fatigue limit pressure can be 
obtained through the deviatoric part of nominal stress tensor: 
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The maximum shear stress is the semi-difference of the first and the third principal stress:
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The analytical form for full sliding is then 
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Figure 7: The fatigue limit ratio in full slip (
P

Qx

⋅µ
=1) for ν=0.5 and for ν=0.05. 

 
 
This equation (23) is seen in Fig.7 to work more efficiently for large ν=0.5 and be poor for 
small ν=0.5 except at large friction coefficients.  
 
In partial slip the difference between microscopic and nominal stresses is no longer more 
negligible see Fig.8.  

(a) 
 

Figure 8: (Caption on the next page) 
 



(b) 

Figure 8: The stress fields in partial slip (
P

Qx

⋅µ
=0.5) for ν=0.5 and µ =1 

 
 
This results in a different maximum shear stress, as seen Fig.9.  
 

 

Figure 9: The Tresca stress in partial slip (
P

Qx

⋅µ
=0.5) for ν=0.5 and µ =1 

 
 

A simple way to estimate the analytical form in partial slip is to calculate the ratio between 
microscopic and nominal shear stress for different friction coefficients. For example, for 



ν=0.5. The mean ratio between microscopic and nominal maximum shear stress is seen to 

decrease as 
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Figure 10: The ratio of Tresca microscopic to nominal stress in partial slip for ν=0.5 
 
 
Hence, the following formulation is suggested, in order to correct the full slip formula (where 

the ratio is unitary): 
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The analytical form of limit pressure in partial slip is finally obtained as  
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Figure 11: The fatigue limit ratio in partial slip (
P

Qx

⋅µ
=0.5) for ν=0.5 

 
 
The numerical results are compared with the analytical formula (25) in the fig.11,12. 

 

 

Figure 12: The fatigue limit ratio in partial slip (
P

Qx

⋅µ
=0.5) for ν=0.3 

 
 
CONCLUSIONS 
The Ekberg, Kabo and Andersson (2002) criterion for fatigue limit using the Dang Van 
multiaxial fatigue criterion has been corrected and given in much more precise analytical 
formulation. This will permit to avoid most calculations, at least in 2d problems. A full 
investigation is now in progress to cover also the 3d case.  
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