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ABSTRACT 
A high-cycle multiaxial fatigue criterion based on the so-called critical plane approach has 
recently been proposed by the present authors.  Accordingly, the critical plane orientation is 
correlated to some averaged directions of the principal stresses, whereas other criteria 
available in the literature determine this orientation by maximizing the amplitude and/or the 
maximum value of some stress components.  Then, fatigue strength estimation is performed 
by considering a quadratic combinations of the shear stress amplitude and the maximum value 
of the normal stress acting on the critical plane.  The application of the proposed criterion for 
evaluating the endurance limit requires the knowledge of three material parameters: the 
fatigue limit under fully reversed normal stress, the fatigue limit under fully reversed shear 
stress, the slope of the S-N curve in the high-cycle regime for fully reversed normal stress. 
The purpose of the present paper is to critically highlight the main characteristics of the 
criterion. 
 
 
1. INTRODUCTION 
Several criteria have been proposed in the literature to assess the fatigue strength of structural 
components submitted to multiaxial loading in the high-cycle fatigue (HCF) regime. 
Generally speaking, the aim of these fatigue criteria is to reduce a given multiaxial 
stress/strain state to an equivalently effective uniaxial stress/strain condition.  According to a 
number of comparative studies (for instance, see Refs [1,2]), the existing multiaxial fatigue 
criteria for HCF regime can be categorised according to the approach followed, namely: 
empirical formulae (Lanza, Manson, Haigh [1], Gough and Pollard [3], etc.), criteria based on 
the stress invariants, energy-based criteria, mesoscopic scale approach, etc. 
Some criteria are based on the so-called critical plane approach, according to which the 
fatigue strength assessment is performed either in a plane where the amplitude or the 
maximum value of some stress components or a combination of them attains its maximum [4-
9], or in plane whose orientation is correlated with that of some averaged principal stress 
directions [10-12]. 
In the present paper, a critical plane-based multiaxial HCF criterion recently proposed by the 
authors is reviewed and compared with some experimental data related to different brittle 
(hard) metals under non-proportional loading.  The critical plane is determined by using 
averaged principal stress directions.  Emphasis is herein placed on the main steps to be 
followed when applying the above criterion. 



2. BASIC FRAMEWORK 
According to the proposed criterion, the fatigue strength estimation in HCF (either endurance 
limit or total life estimation) is performed by analysing  the time-varying stress tensor in a 
given point of the material submitted to multiaxial loading, under the assumption that the 
microcrack initiation stage is the critical one.  Therefore, the criterion seems to be suitable for 
smooth or blunt notched structural components (e.g. see the recent work of Ref. [13] to 
characterise blunt notch geometry), where a very high fraction of the fatigue life is consumed 
during the microcrack initiation stage.  As will be shown in the following, the criterion can 
successfully be applied to hard metals under any periodic proportional or non-proportional 
multiaxial loading.  The main steps of the criterion are as follows [10-12,14]: 

(i) Averaged directions of the principal stresses are determined on the basis of their 
instantaneous directions (two material parameters are required at this step: the 
fatigue limit σaf  under fully reversed normal stress, and the corresponding slope m 
of the S-N curve in the high-cycle regime); 

(ii) The orientation of the initial (hereafter termed critical) crack plane and that of the 
final fracture plane are linked to the averaged directions of the principal stress axes 
(one further material parameter is required at this step: the fatigue limit τaf  under 
fully reversed shear stress); 

(iii) The maximum value and the amplitude (in a loading cycle) of normal stress and 
shear stress, respectively, acting on the critical plane are determined; 

(iv) The fatigue strength estimation is performed via a quadratic combination of 
normal and shear stress components acting on the critical plane (in the case of 
fatigue life estimation, one further material parameter might be required at this 
step: the slope m* of the S-N curve in the high-cycle regime under fully reversed 
shear stress). 

 
 
3. PRINCIPAL DIRECTIONS 
3.1. Instantaneous directions of the principal stress axes 
At a given material point P, the direction cosines of the instantaneous principal stress 
directions 1, 2 and 3 (being ( ) ( ) ( )ttt 321 σσσ ≥≥ ) with respect to a fixed PXYZ frame can be 
worked out from the time-varying stress tensor ( )tσ .  The orthogonal coordinate system P123  
with origin at point P and axes coincident with the principal directions (Fig.1) can be defined 
through the “principal Euler angles”, ψθφ  , , , which represent three counter-clockwise 
sequential rotations around the Z-axis, Y’-axis and 3-axis, respectively (0 ≤ φ  < 2π; 

0 ≤ θ  ≤ π; 0 ≤ ψ  < 2π).  The procedure to obtain the principal Euler angles from the direction 
cosines of the principal stress directions consists of two stages described in Ref. [9], and is 
rather lengthy, although very simple.  The ranges of such Euler angles at the end of this two-
stage procedure are reduced as follows :  2 ,0 πθφ ≤≤   and  22 πψπ ≤<− . 
As is well known, the instantaneous directions of the principal stresses do not vary with time 
in the case of a proportional loading (i.e. the loading case characterised by a time-varying 
stress tensor which can formally be written as ( ) ( )σσ tft = , where ( )tf  is a scalar time 
function and σ  is a time-constant tensor of the stresses), whereas the opposite occurs for non-
proportional loading.  However, it is worth noticing that, also in the case of a proportional 
loading, principal stress directions might vary with respect to time as a result of principal 
stress ordering 321 σσσ ≥≥ .  This occurs, for instance, even in the simple case of uniaxial 
tension-compression (see Fig.2). 
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Figure 1: Principal stress directions 1, 2, 3 described through the Euler angles ψθφ  , ,  
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Figure 2: Courses of principal stresses and changes of principal stress 
directions under sinusoidal tension–compression ( )txσ  

3.2. Averaged directions of the principal stress axes 
The averaged directions of the principal stress axes 2̂,1̂  and 3̂  are obtained from the averaged 
values ψθφ ˆˆˆ  , ,  of the principal Euler angles.  Such values are computed by independently 
averaging the instantaneous values ( ) ( ) ( )ttt ψθφ  , , , as follows [15, 16]: 

( ) ( ) ( ) ( )dttWt
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where T is the period of the cyclic load.  The weight function ( )tW  is given by: 
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where mm /1−=σ   and  H [ ] is the Heaviside function (H [x] = 1  for x > 0, H [x] = 0 for x ≤ 
0).  The proposed weight function is such that it includes into the averaging procedure those 
positions of the principal directions for which the maximum principal stress 1σ  is greater than 
half of the normal stress fatigue limit afσ  under fully reversed loading (a discussion for the 
adopted fraction of afσ  is presented elsewhere [10]). 
 
 
4. CRITICAL PLANE AND FINAL FATIGUE FRACTURE PLANE 
As has been pointed out by Brown and Miller [5], fatigue crack propagation can be 
distinguished into two stages: a first one in which a crack nucleates (near the external surface 
of a structural component) along a shear slip plane (Stage 1, fatigue crack initiation plane), 
and a second one in which crack propagation occurs in a plane normal to the direction of the 
maximum principal stress (Stage 2, final fatigue fracture plane).  Thus, Stage 1 is 
characterised by a Mode II loading, whereas Stage 2 by a Mode I loading [7,17-19]. 
According to the criterion proposed by the present authors, the normal to the estimated final 
fatigue fracture plane of Stage 2, which is the one observed post mortem at the macro level, is 
assumed to be coincident with the averaged direction 1̂  of the maximum principal stress σ 1 
[20] (such an assumption has been assessed to be realistic by comparing theoretical and 
experimental results [12]); this implies that the orientation of the final fatigue fracture plane 
depends not only on the time-varying stress state but also on the material parameters σaf  and 
mσ  .  On the other hand, the critical plane is the verification material plane on which fatigue 
strength assessment is to be performed.  Note that the orientation of the critical plane does not 
generally coincide with that of the final fatigue fracture plane (see below). 
The orientation of the critical plane has been proposed to be correlated with the averaged 
directions of the principal stress axes [14].  In more detail, the empirical expression for δ  (δ  
is the angle between the normal w to the critical plane and the averaged direction 1̂  of the 
maximum principal stress 1σ , where w belongs to the principal plane 3̂1̂  as is shown in Fig. 
3)  is given by: 
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Equation 3 is valid for hard metals which are characterised by values of the ratio afaf στ  

ranging from 31  to 1 (note that the lower limit of afaf στ  corresponds to the Von 
Mises strength criterion of mild metals for static loading).  In the light of the above, the 
orientation of the critical plane depends on the time-varying stress state as well as the material 
parameters σaf , τaf  and mσ . 
When the ratio afaf στ  tends to 31  (threshold between mild and hard metals) the off 
angle δ  tends to 4π .  In this case, the critical plane tends to coincide with the actual fatigue 
crack initiation plane (Stage 1) for such materials.  This is justified by the fact that, in the 



HCF regime, the microcrack initiation stage is the critical one for the considered smooth or 
blunt notched structural components (made of mild-hard metals).  On the other hand, when 
the ratio afaf στ  tends to 1 (threshold between hard and extremely hard metals), the off 
angle δ  tends to zero.  This is in line with the fact that such materials have predominantly 
Stage 2 crack growth and, hence, the critical plane is assumed to coincide with the final 
fatigue fracture plane. 
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Figure 3: Correlation between averaged principal stress directions 3̂2̂1̂  and normal w  to the 
critical plane 

 

A value of δ  equal to 4π  might be conjectured for 31<afaf στ  (mild metals), 
whereas we can assume δ  as equal to zero for 1>afaf στ  (extremely hard metals).  Some 
interesting observations on the variation of δ  as a function of afaf στ  can be found in 
Ref.[21]. 
 
 
5. FATIGUE STRENGTH ESTIMATION 
5.1. Stress components acting on the critical plane 
The critical plane ∆ , passing through a given point P in the material, and the attached 
orthogonal coordinate system Puvw are considered (Fig.4), where the w-axis is normal to the 
critical plane.  The direction cosines of u-, v- and w-axis can be computed, with respect to the 
PXYZ frame, as a function of the two angles ϕ  and ϑ  [14]. 
The stress vector wS  acting at a point P on the critical plane ∆  can be expressed as follows: 

wSw ⋅= σσσσ  (4)
Then, the normal stress vector N and the shear stress vector C lying on the critical plane are: 

( ) wSwN w⋅=  (5)
NSC w −=  (6)
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Figure 4: Puvw and PXYZ coordinate systems (u- and v-axes belong to the critical plane ∆) 

 
For multiaxial constant amplitude cyclic loading, the vectors N and C are periodic functions 
of time.  The direction of the normal stress N(t) is fixed with respect to time: consequently, 
the mean value Nm and the amplitude Na of the normal stress can readily be calculated.  On 
the other hand, the definitions of the shear stress mean value mC  and amplitude aC  are not 
unique, owing to the generally time-varying direction of C.  The procedure proposed by 
Papadopoulos [22] has been adopted in Ref. [14] to determine the mean value mC  and the 
amplitude aC  of the shear stress vector C: 
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where the symbol ⋅  indicates the norm of a vector, )(tC  is the shear vector at the time 
instant t, C′  is a vector chosen according to the procedure presented in Ref. [22].  Note that, 
for proportional loading, we have σσ )()( tft =  and, hence, wσwσSw ⋅=⋅= )()()( tftt  (see 
Eq. 4).  Therefore, the direction of wS  and that of C (see Eq. 6) are fixed with respect to time, 
since ( )tf  is a scalar time function. 
 
 
5.2. Endurance limit 
As a multiaxial fatigue limit condition, the following nonlinear combination of the maximum 
normal stress ( maxN = mN + aN ) and the shear stress amplitude ( aC ) acting on the critical 
plane has been proposed [14]: 
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Such a criterion is to some extent reminiscent of the well-known Gough ellipse [3].  However, 
conversely to the Gough’s criterion, the proposed criterion considers stress components acting 
on the critical plane and, hence, it is capable of implicitly accounting for loading non-
proportionality (e.g. the critical plane orientation depends on the phase angles between the 
stress components).  In addition, some well-established experimental findings are included in 



Eq. 8, namely: the mean shear stress mC  does not affect the HCF strength of hard metals [3], 
and the effect of the mean normal stress mN  is included. 
In order to transform the actual constant amplitude periodic multiaxial stress state into an 
equivalent uniaxial normal stress amplitude aeq,σ , Eq. 8 can be written as follows: 
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5.3. Finite life fatigue strength 
Using Basquin-like relationships for both fully reversed normal stress [ ( )m

fafa NN 0σσ = ;  
=aσ amplitude of normal stress at fatigue life fN ; 0N = reference number of cycles, e.g. 

2 ⋅ 106] and fully reversed shear stress [ ( ) *
0

m
fafa NNττ = ;  =aτ amplitude of shear stress at 

fatigue life fN ], the number fN  of cycles to failure can be obtained from the solution of the 
following expression: 
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If the slope of the S-N curve for normal stress and that for shear stress coincide ( *mm = ), the 
number fN  for a given multiaxial periodic stress state can explicitly be worked out from 
Eq.10: 
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6. SINUSOIDAL PLANE STRESS STATE 
Let us consider the following biaxial normal stresses ( xσ , yσ ) and shear stress ( xyτ ) at a 
given point P in the material, subjected to synchronous out-of-phase sinusoidal loading: 

mxyaxyxy

myayy

mxaxx

Ttsin
Ttsin
Ttsin

,,

,,

,,

)2(

)2(
)2(

τβπττ
σπσσ

σαπσσ

+−=

+=
+−=

 
 

(12)

where α  is the phase angle between the stresses xσ  and yσ , β  is the phase angle between 
the stresses yσ  and xyτ , the subscripts a and m stand for amplitude and mean value, 
respectively. 
 
 
6.1. Instantaneous and averaged  directions of the principal stress axes 
As is well-known, the two non-zero principal stresses Is  and IIs  in the stress plane XY are 
equal to: 
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whereas the angle γ  (0°≤ γ  ≤ π/4), which defines the absolute value of the inclination of the 
I-II principal stress directions with respect to the XY coordinate system, is given by: 

( )yxxyarctg σστγ −= /2
2
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(14)

The following cases may occur (see Fig. 1): 
(a) 0,,0, 321 ===⇒> σσσ IIIIII ssss  (1-axis ≡ I-axis, 2-axis ≡ II-axis and 3-axis ≡ Z-
axis); 
(b) IIIIII ssss ===⇒< 321 ,,00, σσσ  (1-axis ≡ Z-axis, 2-axis ≡ I-axis and 3-axis ≡ II-
axis); 
(c) IIIIII ssss ===⇒≤≥ 321 ,0,0,0 σσσ (1-axis ≡ I-axis, 2-axis ≡ Z-axis and 3-axis ≡ 
II-axis). 
From the time-varying stress tensor, the courses of the principal Euler angles )(),( tt θφ  and 

)(tψ  can be determined.  The specific values that the principal Euler angles can attain for the 
above cases (a) to (c) are as follows: 
(a1)  2;2;;03 πψπθγφσσσ ===⇒≥= yx  
(a2)  2;2;2;03 πψπθγπφσσσ ==−=⇒<= yx  
(b1)  0;;01 ==+⇒≥= θγψφσσσ yx  
(b2)  0;2;01 =−=+⇒<= θγπψφσσσ yx  
(c1)  0;2;;02 ===⇒≥= ψπθγφσσσ yx  
(c2)  0;2;2;02 ==−=⇒<= ψπθγπφσσσ yx  
As an example, a fully reversed normal stress yσ  with 2π  out-of-phase fully reversed shear 
stress xyτ  is considered (Fig. 5a).  The biaxiality ratio ayaxy ,, στλ =  is assumed to be equal 
to 0.5 (in this case, the material plane experiencing the maximum amplitude of the shear 
stress, e.g. see McDiarmid criterion [7], is indeterminate), and the dimensionless applied 
normal stress amplitude afayay σσσ ,, 2~ =  is assumed to be equal to 0.5.  The courses of the 
principal stresses and the principal Euler angles are shown in Figs 5b and 5c, respectively. 
The resulting values of the averaged principal Euler angles are ( σm  is taken as equal to 10): 

0ˆ,2ˆ,10.1ˆ === ψπθφ .  In particular, the angle η (with φπη ˆ2 −= ) between the averaged 

direction 1̂  of the maximum principal stress 1σ  and the loading axis Y of the applied normal 
stress yσ  (e.g. Y coincides with the longitudinal axis of a specimen submitted to bending 
loading) results to be equal to 0.47 (i.e. about 27°). Figure 6 shows the variation of the angle 
η (expressed in degrees) as a function of the phase angle β, the biaxiality ratio λ , the 
dimensionless applied normal stress amplitude ay ,

~σ . 
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Figure 5: Periodic time history of applied stresses (a), principal stresses (b) and principal 
Euler angles (c) 
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Figure 6: The angle η  (between the normal to the final fatigue fracture plane and the loading 
axis Y) against the phase angle β, for different values of the biaxiality ratio λ and the 
dimensionless applied normal stress amplitude ay,

~σ   ( °= 0η  for 0=λ  and °= 45η  for ∞=λ )
 
 
 



6.2. Stress components acting on the critical plane 
The stress vector S 

  

 w , acting at a given point P on the critical plane ∆, can be computed as 
follows ( ( )ϑϕϑϕϑ cossinsincossinw ;;≡ , see Fig. 4) [14]: 
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The mean value mN  and the amplitude aN  of N can be determined by substituting the stress 
components (Eq. 12) into Eq. 5: 
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The shear stress vector C lying on the plane ∆ is computed through Eq. 6: 
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The values uC  and vC  of the components of C along the u- and v-axis are given by 
( ( )ϑϕϑϕϑ sinsincoscoscosu −≡ ;;  and ( )0;; ϕϕ cossinv −≡ , see Fig. 4): 

( ) ( ) muu CtcosgtsinfC ,++=⋅= ωωCu  (19a)

( ) ( ) mvv CtcosqtsinpC ,++=⋅= ωωCv  (19b)
where the functions f, g, p and q are expressed by: 
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and the mean values, muC ,  and mvC , , of the components uC  and vC  are given by: 
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Equations 19 are the parametric equations of the ellipse s (Fig. 7) described by the tip of the 
shear stress vector C on the critical plane ∆ during a loading cycle. This ellipse is centred at 
point ( muC , ; mvC , ), and its semi-axes can be computed as follows: 
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Note that the amplitude of C coincides with the major semi-axis aC  of the above ellipse. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Elliptic path s described by the tip of the shear stress vector C acting on the critical 
plane ∆ , during a cycle of a synchronous out-of-phase sinusoidal plane stress state 

 
 
6.3. Comparison with experiments 
An extensive comparison between the predictions of the present criterion, experimental 
results as well as predictions of other criteria has been carried out.  The comparison has been 
performed for constant amplitude loading in terms of endurance limit and final fatigue 
fracture plane orientation [12,14,23] as well as, using an extended version of the criterion, for 
variable amplitude loading (random loading) in terms of fatigue life and final fatigue fracture 
plane orientation [24].  In the following, we briefly review some comparisons with 
experimental data related to synchronous in-phase or out-of-phase constant amplitude 
sinusoidal loading.  In particular, the following fatigue tests on smooth specimens are 
analysed: 

(i) bending and torsion ( yσ , xyτ ) [25]; 
(ii) bending and torsion with mean stress ( yσ , xyτ ) [26,27]; 
(iii) axial loading and internal pressure ( xσ , yσ ) [28]. 

The relevant material properties related to such experimental tests are reported in Table 1, 
whereas a summary of the loading conditions is reported elsewhere [14,23].  It needs here to 
be underlined that all loading cases being examined correspond to the multiaxial endurance 
limit state. 
 

Table 1: Material properties related to the experimental tests in Refs [25-28] 
  Materials σaf τaf τaf /σaf mσ No. of 
   [MPa] [MPa]   test data 
        

(a) Nishihara et al. [25] Hard steel 313.9 196.2 0.63 8.7 12
        

(b) Nishihara et al. [25] Mild steel 235.4 137.3 0.58 18.2 10
        

(c) Nishihara et al. [25] Cast iron 96.1 91.2 0.95 19.4 8
        

(d) Froustey et al. [26] 34Cr4 410.0 256.0 0.62 20.9 12
        

(e) Zenner et al. [27] 30NCD16 660.0 410.0 0.62 13.2 10
        

(f) Rotvel [28] Low-carbon steel 215.8 127.2 0.59 14.5 6

u

v 

P Cu,m 

Cv,m

Ca 

C(t)
s 

∆



β = 0°

      30°

      60°

      90°

τxy,a /σy,a =   0.0    0.2   0.5   1.2    ∞

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350
S

H
EA

R
 A

M
P

LI
TU

D
E

, C
a 

(M
P

a)

I = +10%

I = 0%

I = -10%

(a)
β = 0°

      60°

      90°

0 50 100 150 200 250
0

50

100

150

200

250

I = +10%

I = 0%
I = -10%

τxy,a /σy,a =   0.0    0.2   0.5   1.2    ∞(b)

 

β = 0°

      90°

0 20 40 60 80 100
0

20

40

60

80

100

SH
EA

R
 A

M
PL

IT
U

D
E,

 C
a 

(M
P

a)

I = +10%

I = 0%

I = -10%

τxy,a /σy,a=  0.0    0.2   0.5   1.2    ∞

(c)
β = 0°

      45°

      60°

      90°

τxy,a /σy,a =   0.25    0.60   1.70

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

I = +10%

I = 0%

I = -10% -.3
-1

-.2.2
-.2

-.2
-.3-1 -.2

-.3

(d)

 

β = 0°

      60°

      90°

      120°

τxy,a /σy,a =  0.25    0.50   1.00

0 50 100 150 200 250 300 350 400 450

MAXIMUM NORMAL STRESS, Nmax (MPa)

0

50

100

150

200

250

300

350

400

450

SH
E

AR
 A

M
PL

IT
U

D
E

, C
a 

(M
P

a)

I = +10%

I = 0%

I = -10% (-1,-1) (0,-1)

(-1,0)

(-1,0)
(-1,0)

(-1,-1) (0,-1)

(0,-1)

(-1,-1)

(-1,-1) (-1,-1)

(-1,-1)

(e)
α = 0°

      180°

λ = σx,a /σy,a =   0.0    0.8   1.3   36.7

0 50 100 150 200 250

MAXIMUM NORMAL STRESS, Nmax (MPa)

0

50

100

150

200

250

I = +10%

I = 0%

I = -10%

(f)

 
Figure 8: Shear stress amplitude against maximum normal stress acting on the critical plane: 
theoretical predictions and experimental results [25-28]. For cases (a), (b), (c), (f), the 
loading ratios are equal to -1. For case (d), numbers near symbols refer to the loading ratio 
of σy (the loading ratio of τxy is equal to -1).  For case (e), couples of numbers in brackets 
refer to the loading ratios of σy  and τxy , respectively. 



By plotting the shear stress amplitude aC  against the maximum normal stress maxN  acting on 
the critical plane, endurance limit state is exceeded when the experimental point with 
coordinates ( maxN , aC ) falls out of the ellipse with semi-axes equal to afσ  and afτ  (see Eq. 
8).  For the different materials and loading conditions being here considered, Figure 8 shows 
the correlation between this theoretical ellipse (continuous line) and the test results related to 
the endurance limit state.  A good agreement exists since most of the experimental points fall 
very close to such an ellipse, between two dashed curves representing an error of ±10%. 
 
 
7. CONCLUDING REMARKS 
A high-cycle fatigue criterion based on the so-called critical plane approach for multiaxial 
periodic loading has been reviewed.  The averaged principal stress directions determined 
through a weight function method are used to predict the orientation of the critical plane, 
understood as the plane on which fatigue strength estimation ought to be performed.  
Multiaxial endurance limit state is assessed using a nonlinear combination of the maximum 
value of the normal stress and the amplitude of the shear stress acting on the critical plane. 
The application of the criterion for endurance limit evaluation requires the knowledge of three 
material parameters (the fatigue limit under fully reversed normal stress, the fatigue limit 
under fully reversed shear stress, the slope of the S-N curve in the high-cycle regime for fully 
reversed normal stress), whereas one further material parameter (the slope of the S-N curve in 
the high cycle regime for fully reversed shear stress) is required for fatigue life calculation. 
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