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ABSTRACT 
This paper describes a recently proposed theory of plastic flow which is specially suited to 
deal with variable amplitude multiaxial load under the common assumption of rate-
independence usually employed in fatigue calculations. The theory uses, and generalizes to 
the multiaxial case, concepts familiar to fatigue designers acquainted with the Local Strain 
Approach to (low cycle) fatigue. The theory does not make use of yield or loading surfaces 
that move about in stress space, a common ingredient of existing cyclic plasticity theories. It 
uses the concept of distance in a stress space endowed with a certain metric measurable from 
the yield criterion. Kinematic hardening and the memory effect appear in a natural way in the 
framework presented. The theory is reviewed first and then the application to the classical 
experiment of Lamba and Sidebottom [1] is presented.   

 
 

1. INTRODUCTION 
The Local Strain Method constitutes nowadays a standard tool for fatigue life predictions in 
many industries. It has been incorporated in commercial software [2,3] and it is very well 
described in textbooks [4,5]. The use of the cyclic curve, the hysteresis loops, Neuber´s rule 
and the memory effect are explained to engineering undergraduates in many Engineering 
Schools these days. In the uniaxial load case, of course. 
 
 The extension of the Local Strain Method to the multiaxial case requires at least three main 
steps, as I see it. The first one is the development of plastic flow rules which reproduce the 
way we operate with hysteresis loops, cyclic curves, memory effect and so on in the simple 
uniaxial case. The second step would be the development of multiaxial Neuber-type rules for 
dealing with inelastic strains at notches. This relies heavily on the use of a theory of plasticity 
and hence on the previous step. There are already a number of proposals in this respect [6, 7]. 
The third step is probably the most difficult and it is the area where more work has been 
invested so far: the multiaxial cycle counting and fatigue life criteria. There are too many of 
them to single any one out. A comparison of several criteria is  provided in [8]. They  need 
the stresses and strains as inputs and therefore they also depend on the two previous steps. 
 
We are concerned here with the first step. Let us just mention that currently accepted 
incremental plasticity theories (based on Mróz’s [9] multiple surface concept or Armstrong 
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and Frederick’s [10] non-linear  hardening rules) have quite a different “feeling” or “modus 
operandi” from what one normally does in the Local Strain approach.  
 
Next section reviews briefly some of the more important concepts of incremental rate-
independent plasticity theories. This will put the model described in the present work in 
perspective.     
 
 
2. CLASSICAL PLASTICITY 
This section briefly reviews some of the more important concepts of incremental plasticity 
theories. Defining a constitutive model entails the specification of a yield criterion, and of 
flow and hardening rules. Moreover, when dealing with variable amplitude loads, the model 
requires the capability to reproduce the memory effect.  
 
 
2.1. Yield criterion 
The yield criterion defines the combination of stresses which bring about the initial 
production of plastic deformation. The general expression is thus 
 

( )f = kσ                                                                                                                                 (1) 
 
where σ designates the stress tensor (treated hereafter as a nine-dimensional vector) and  is 
a characteristic property of the material which may change as the material hardens due to the 
plastic deformation process. 

k

 
The expression of the yield criterion can be used to calculate distances between stress points: 
it is actually a way of defining the size of the stress tensor [11,12]. This is really the idea that 
originated the development of the theory presented here. Let us consider the physical meaning 
of the two most  widely used yield criteria, namely Tresca and Von Mises, as follows. If  Iσ , 

IIσ  and IIIσ   are the principal stresses, then 
 

1 ( )
2I II IIτ σ σ= −         1 ( )

2II III Iτ σ σ= −       1 (
2III I II )τ σ σ= −                                                 (2) 

 
are the principal shear stresses. According to Tresca's rule, plastic strain takes place when the 
absolute value of either Iτ , IIτ  or IIIτ  rises to a certain value. Furthermore, it can be shown 
that the expression of von Mises criterion is equivalent to stating that plastic strain begins 
when 2 2 2

I II IIIτ τ τ+ +  rises to another characteristic value. Now, recalling the concept of  norm 
on a vector space(see [13], page 4), both criteria can be understood as establishing that plastic 
flow occurs when the norm of the shear stress vector reaches a certain characteristic value. In 
the first case the magnitude is measured according to the maximum norm 

∞
i , whereas in the 

second the more familiar Euclidean norm 
2
i is used. This introduces the idea of norm, or 

more generally, of distance in stress space into the theory. 
 
 
 



 
2.2. Flow rule 
The flow rule gives the direction of the plastic strain increment. The most widely used theory 
for this purpose is the associated normality rule, which establishes that the plastic strain 
increment should be directed along the normal to the yield or loading surface: 
 

1d (dp

h
=ε σn )⋅ n                                                                                                                      (3) 

 
where d pε is the plastic strain increment, dσ  the stress increment,  the unit vector normal 
to the yield surface and  is the so-called plastic modulus, an obvious generalization of the 
notion of plastic modulus in the uniaxial stress-strain curve [9]. 

n
h

 
 
2.3. Hardening condition 
This condition sets the way the loading surface evolves as plastic strain increases. If the 
material hardens identically in all directions, then it is said to undergo isotropic hardening. In 
such a case, the variable k in Eq. (1) will be a function of a certain measure of the acumulated 
plastic strain, such as the plastic work: 
 

( ) ( )Pf Wϕ=σ                                                                                                                           (4) 
 

d p
P

l

W = ⋅∫σ ε                                                                                                                           (5) 

On the other hand, if a directional effect such as the Bauschinger effect exists, then the 
material hardens in the direction of the strain and softens in the opposite direction; this 
behaviour is more accurately modelled by using the so-called kinematic hardening, which 
involves a shift in the loading surface along a certain direction. Mathematically, this is 
represented by 
 

( )f − = kσ α                                                                                                                             (6) 
 
where α , is the the centre of the loading surface, often called the backstress. If the loading 
surface simultaneously moves and expands in stress space, then a more comprehensive 
scheme, which is a combination of the previous two, is obtained: 
 

( ) ( p )f Wϕ− =σ α                                                                                                                    (7) 
 
More complicated situations, with rotations or even distortions of the yield surface, have been 
used at times, but normally the hardening rule describes just the variation of α , since in the 
majority of applications even the isotropic hardening  is disregarded.  
 
In order to describe the complex behaviour displayed by materials, it is customary in cyclic 
plasticity theories,  to use not just one, but sometimes two (the yield surface proper and a 
bounding surface) or even a whole family of yield surfaces that move about in stress space. In 
these cases, the hardening rule must determine the evolution of all the surfaces. Thus, Mróz’s 
rule for his multiple surface model proposes that the direction translation of a surface is 



determined by the point on the next surface having the same exterior normal [9]. In this 
model, each surface has an associated value of the plastic modulus and the magnitude of the 
translation of the surfaces is obtained from the consistency condition, according to which 
during plastic loading the stress point must always remain on the current loading surface. 
Two-surface theories use the same type of hardening rules as the multiple surface model, but 
the variation of the plastic modulus is prescribed analytically as a function of the relative 
position between the yield and the bounding surface.  
 
 
A different approach is followed in the hardening theory of Armstrong and Frederick [10]: a 
non-linear evolution for the translation of the yield surface is obtained through the solution of 
a differential equation which relates the actual value of translation in a given load step to the 
increment of plastic strain and to the current position of the surface. In this theory the 
consistency condition is used to calculate the value of the plastic modulus.  
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Figure1: Memory effect 
 
 
2.3 Memory effect 
One of the key elements in determining the stress-strain behaviour at the notch root for 
variable amplitude loading in the Local Strain method is the correct application of the 
memory effect. This is illustrated in Fig.1, as one moves from point A to D. After reaching 
point B, the stress is increased to C, following the hysteresis loop. When the load is decreased 
from C, after reaching point B, the material continues to D along the descending part of the 
hysteresis loop starting at A, proceeding just as if the small loop B-C-B had never occurred. 



This special behaviour of the material “remembering” its deformation path is called memory 
effect [4, 5]. 
 
3. THE PROPOSED THEORY 
The general concept is that the plastic straining undergone by the material in going from a 
stress state to another (in “moving between two stress points”) depends on the distance 
between these two stress points. This distance, however, is not to be calculated using the 
Euclidean norm: the stress space is considered to be a nine dimensional Riemannian vector 
space.   
 
 
3.1. Yield criterion: definition of a metric. The fundamental tensor. 
If the distance  between the neighbouring points with coordinates ds iσ  and di iσ σ+  is 
given by the quadratic differential form 
 

2 d diijds g jσ σ=                                                                                                                        (8) 
 
the space is said to be a Riemannian space (see [14]). The ’s are the components of a 
second order symmetric tensor called the fundamental tensor of the space. The quadratic form 

ijg

d diijg jσ σ  is called the metric. The magnitude Q of the vector σ  with components iσ  is 
defined by  
 

22 i j
ijQ gσ σ σ= =                                                                                                                   (9) 

 
Yielding is simply assumed to occur when the magnitude of the stress vector reaches a given 
threshold. It is thus expressed  
 

i j
ijQ gσ σ σ= = = k                                                                                                           (10) 

 
The metric of the stress space is thus embedded in the yield criterion.  
 
The structure of the metric tensor turns out to be very simple. One important  feature is that  
the hydrostatic direction must represent a null displacement, i.e., the distance between any 
two stress points separated only by a hydrostatic stress must be zero. This reflects the fact that 
hydrostatic stresses do not contribute to yielding. This also ensures that plastic strains do not 
change volume. By way of example, the metric tensor  for a material satisfying the von 
Mises criterion is given below.  

ijg



1/3 1/6 1/6 0 0 0 0 0 0
1/6 1/3 1/6 0 0 0 0 0 0
1/6 1/6 1/3 0 0 0 0 0 0
0 0 0 1/2 0 0 0 0 0
0 0 0 0 1/2 0 0 0 0
0 0 0 0 0 1/2 0 0 0
0 0 0 0 0 0 1/2 0 0
0 0 0 0 0 0 0 1/2 0
0 0 0 0 0 0 0 0 1/2

ijg

− −
− −
− −

=                                                                           (11) 

 
It must be realized that the matrix is a singular one. The following ordering has been 
chosen to identify the usual components of the stress tensor and the indices in the nine-
dimensional vector space above: 

ijg

111 σ− , 222 σ− , 333 σ− , 124 σ− , 215 σ− , 136 σ− , 317 σ− , 

236 σ− ,  329 σ−  
 
 
3.2. Hardening condition and flow rule 
The central hypothesis of the model is that the plastic deformation undergone in moving from 
a point in the stress space to a different one depends only on the distance between the two as 
measured with the metric introduced above. 
 
The reference point for the virgin material on application of the first load is the origin of the 
stress space. In this case, the distance from the origin is the magnitude of the stress vector 
itself. A hypersphere centred at the origin is the locus of all the points located at the same 
distance from the origin. It is assumed that the material would have reached the same state of 
hardening in any of those points. Consider a stress increment dσ   from a point in the above-
mentioned hypersphere and pointing in the outward direction. This is a loading process. 
Unloading processes, involving load reversals, are considered later on. Only the component of 
dσ  in the direction  normal to the sphere will increase the distance to the origin. 
Accordingly, the plastic strain caused by 

n
dσ  will develop in that normal direction. Its 

modulus will be given by the increment of a certain hardening function ( )λ i , a scalar function 
whose argument is the separation between the stress points. As long as a loading process 
progresses, the distance is measured between the current stress point and the point where that 
loading excursion started, and this distance is the argument of the hardening function. When 
unloading occurs, an essential difference arises as discussed below. Since  Q σ=  designates 
the distance to the origin during the first loading process, the reasoning above establishes the 
flow rule by means of the following equations 
 

dd d d ( )d
d

p Q Q
Q

Qλλ= = = Φε                                                                                               (12) 

 
and 
 



d ( )dp Q Q= Φ nε                                                                                                                    (13) 
 
where , the derivative of the hardening function, will be called hereafter the hardening 
modulus. Further details of the above rules can be obtained in [15]. The hardening function 
can be very easily derived from conventional tests. For example, the analytical procedure for 
establishing the hardening function for a Ramberg-Osgood material is similar to that 
described in [11].  

( )QΦ

 
The unit normal vector  is obviously calculated through the gradient of Q : n
 

Q
Q

n = ∇
∇

                                                                                                                                 (14) 

 
The gradient of Q  is a (nine-dimensional) vector whose components are the partial 
derivatives of  with respect to the Q iσ  components. It is said to be a covariant vector (see 
[14], page 6). We need not be concerned here with the precise mathematical meaning of this 
term. It is just mentioned because it is customary to write the components of such vectors 
with the labels as a subscript, rather than as a superscript, as has been done with the iσ  
themselves. It can be shown that 1Q =∇  (see [12]). Therefore,  
 

Q= ∇n                                                                                                                                    (15) 
 
and      
 

j
ij

i

g
n Q

σ
=                                                                                                                                (16) 

 

                                                                                     Note the application of the summation convention in the numerator. This is an example of the 
process known as lowering the superscript [14, page 20].  The increment of   is then given 
as 

 

Q

 
d d =Q = Q ⋅ ⋅∇ dσ σn                                                                                                            (17) 
 
Consequently, the flow rule can also be expressed in a more direct way as a function of the 
stress increment dσ : 
 

( )(d ) ( )( )dpd Q Q= Φ ⋅ Φ ⊗n n = n nε σ σ                                                                               (18) 
 
where the property that defines the tensor product ( ⊗ ) of two vectors has been used†.  
                                                 
† The tensor product of two vectors a and b is the linear application that assigns to each vector v the 
vector  (see [16], page 4):  

⊗a b
( )⋅b v a

  ( ) ( )v⊗ = ⋅a b b v a
Its components  are given as (  ij i ja b⊗ =a b)



One can now relate the increment of total strain to the increment of stress by simply adding 
the elastic strain, which is introduced by means of the Hook tensor H . The expression is 
 
d ( ( )( ) )dH Q= + Φ ⊗n nε σ                                                                                                    (19) 
 
This important equation represents the instantaneous linear relationships between the stress 
and strain increments which are needed in numerical calculations. It can be shown that they 
are equivalent to the well-known Prandtl-Reuss equations of plastic flow if the von Mises 
metric is used. 
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Figure 2:  Measuring distances after unloading 
 
Let us now analyse what happens after unloading is detected. Unloading would occur in a 
certain load step if dQ 0≤ , i.e., if Q  were to decrease in that load step. That would signal the 
starting of a new load excursion along a new hysteresis loop, using the Local Strain 
terminology, so to speak.  Imagine that the material has been loaded as far as point 0σ  at a 
distance  from the origin. Based on the previous reasoning, the same degree of hardening 
would correspond to every point on the surface 

0Q

0Q Q=  (see Fig. 2). Let us compare the 
unloading from 0σ  to points such as 1σ  and 2σ on the same surface. On moving from 0σ   
towards 1σ or 2σ  the value of Q  measured relative to the origin will initially decrease and, 
hence, unloading will be detected. As movement proceeds, in both cases Q will decrease and 
then increase to its original level. The way in which  evolves will be very different in the 
two cases, yet the final state of hardening should be the same, since the original surface is 

Q



reached again. Once more, measuring distances between 1σ and 0σ  and between 2σ  and 0σ  
render different values, and yet the degree of hardening is the same. Since our basic 
assumption is that hardening depends on distance between stress points, we come to the 
conclusion that, on load reversals, distances must be calculated differently: all paths such as 
those in Fig. 2, beginning and ending in the same sphere (and through its interior), must have 
the same length from the point of view of hardening and this length must be the argument of 
the hardening function under unloading conditions. We, thus, speak of a generalized distance 
or separation on unloading and equate it to the diameter of the hypersphere that contains the 
end points. 
 
Based on this definition, the generalized distance q between two points σ  and 0σ  would 
simply be given as 
 

cos
q

θ
0=

σ − σ
                                                                                                                            (20) 

 
where θ  is the angle between the upward and downward trajectories depicted in Fig. 2. The 
term  cosθ  is calculated with usual formula through the scalar product of 0σ − σ  and 0−σ , 
 

0

0 0

( ) (cosθ − ⋅
= 0 )σ σ − σ

σ σ − σ
                                                                                                         (21) 

 
Note carefully that the scalar product must be calculated by means of the fundamental tensor 
(see [16], page 20-21), 
 

0 0 0( ) (i j j
ijg 0 )σ σ σ⋅ = − −−σ σ − σ                                                                                            (22) 

 
In this case, the unloading iso-hardening surfaces will be hyperspheres tangential at 0σ . It is 
interesting to compare Fig. 2 with the classic experimental data of Lamba and Sidebottom [1], 
as well as with the representations of the  Mróz multisurface model [9]. Note how in  Mróz’s 
model the yield surfaces are tangent at the current stress point, whereas here the surfaces are 
tangent at the point where the current loading process started. 
 
If loads change direction in succession, then the distance q is obtained by projecting onto the 
diameter of the hardening surface which contains the last two points of load reversal (see Fig. 
3). In this case one has 
 

( ) (cos ca i i

ca i i

θ − ⋅
=

)σ σ σ − σ
σ − σ σ − σ

                                                                                                    (23) 

 
where caσ  is the centre of the above-mentioned loading surface and iσ  the starting point for 
the segment. 
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Figure 3:  Successive change of loading direction 
 
 
 
Under these conditions, the flow rule is defined by an expression similar to that used for the 
first loading case, 
 
d ( )dp q qφ= nε                                                                                                                       (24) 
 
The hardening modulus function ( )qφ  is  calculated from a cyclic test, but this time from the 
hysteresis loops rather than from the cyclic curve. With materials of the Masing type, the 
hysteresis loop is determined simply by scaling the cyclic behaviour curve by a factor of 2, so 
the relationship between  and ( )qΦ ( )qφ  is very simple: ( ) ( / 2)q Q qφ = Φ = . The vector n  in 
the equation above is now given by the gradient of  q. The magnitude of the gradient of  q can 
be shown to be  21/ cos θ , so the expression of the flow rule reduces to 
 

2

1( ) ( )d
cos

pd Qφ
θ

= ⊗ε σn n                                                                                                 (25) 

 
and vector   has the form n
 

1

2 2( ) (i ca
iq q −

− − −n = )iσ σ σ σ                                                                                                (26) 

 
where is the diameter of the loading surface where 1iq − iσ  lies. 
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Figure 4: Memory effect (multiaxial case) 
 
 
 
3.3. Multiaxial memory rule 
The memory effect appears in very simple terms in the present framework. Consider a loading 
process involving several reversals such as that of Fig. 3. Imagine that σ  keeps moving away 
from iσ : a point would be reached where q would equal the diameter of the surface where the 
starting point for that particular loading segment is inscribed (see Fig. 4). At that point, it is 
assumed that a cycle is closed and from then on the material behaves as though such a cycle 
had never occurred. Thus, if the distance q was until then being measured relative to iσ and 
projecting onto the diameter joining iσ  and caσ , beyond that point it is again measured with 
respect to 0σ , and by projecting onto the diameter through the origin and 0σ . Should the 
phenomenon take place in deeper nested surfaces, the effect would be similar. Note that, at 
the time a given cycle closes, the expanding surface and the reference one coincide, so they 
share the same normal at σ  and continuity in the plastic strain is guaranteed. 
 
 
 
 
3. APPLICATION TO EXPERIMENTAL RESULTS 
 
This section discusses the application of the proposed model to experimental results reported 
by Lamba and Sidebottom [1] on a tubular specimen of oxygen-free high-conductivity 
(OFHC) copper subjected to combined tension and torsion. The specimen was subjected to 
torsional cycling and then to 90 deg out-of-phase cycling until it fully stabilized. A 
comparison made between axial, torsional and out-of-phase cycling for this material showed 
that the cyclic hardening produced by out-of-phase cycling was appreciably greater. 
Therefore, in the calculations reported here, the out-of-phase hardening has been taken into 



account by the simplest procedure of obtaining the hardening modulus function from the 
effective stress versus effective strain curve derived in 90 deg out-of-phase experiments. This 
is the procedure followed by  McDowell et al.  [17] on their analysis of the same experimental 
data. In fact, the stable effective cyclic stress-strain curve used here, and shown in Fig 5, is 
the one presented by McDowell (see his figure 5b), which has been approximated as 
piecewise linear by means of 7 segments. 
 
In the specimen under study here, when the stress response stabilized, the strain levels were 
continuously decreased in the same out-of-phase manner until all the stresses and strains were 
reduced to zero. Following this, the non-proportional strain path in Fig. 6 was imposed. 
According to the authors, this strain path was chosen because it includes a wide range of 
angles between different paths segments and because the path had equal positive and negative 
peaks. 
 
The end points of the path segments were numbered from 0 to 8 and the path was traversed in 
a numerically increasing sequence (Fig. 6). The stress and strain response of the material to 
the nonproportional path appears in Fig. 7 and can be seen to be quite complex.  
 
The stresses and strains at each end of the loading cycle are shown in Table 1, along with the 
values predicted by the theory presented here. This table is adapted from that presented by 
McDowell. For the sake of comparison, predictions effected by Lamba and Sidebottom and 
by McDowell are also included in the table. Lamba and Sidebottom’s model used two Tresca 
surfaces and the Mróz infinitesimal kinematic hardening rule. The nonlinear strain hardening 
behaviour assumption was that the stress-plastic strain slope was an exponential function of 
the distance between the stress point and the point on the limit surface having the same 
exterior normal, and the stress-strain slope was taken to be zero on the limit surface. 
McDowell’s model used up to 13 Tresca surfaces with effective strain increments ranging 
from 0.01 to 0.45 percent and the Garud finite increment hardening rule. Note that the present 
model predicts the biaxial response as accurately as the others. The average error in predicted 
axial and shear stresses at the designated points 0-8 of the loading cycle is around 15% for the 
three studies. 
 
 
It is thus justified to use words similar to those of Lamba and Sidebottom and to say that when 
the experimental results and the present formulation’s prediction are compared, the striking 
similarity is unmistakable. All path segments are faithfully predicted and the quantitative 
agreement is reasonably good. This seems to be a fair performance for a model that only 
requires to solve in each load step a linear relationship between the stress and strain 
increments and to check for the closure of “hysteresis loops” for application of the memory 
rule in much the same way as has become customary in the Local Strain Approach. 
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Figure 5: Stress-strain curve used to obtain the hardening modulus function 
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