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ABSTRACT 
This paper considers three of the enduring problems of fatigue life estimation: multiaxial 
loading, stress concentrations and size effects. The work forms part of an extensive 
investigation which I and my co-workers are conducting into the use of some prediction 
methods which we call the Theory of Critical Distances (TCD). Data from the literature show 
that there is a strong effect of hole size on the fatigue limit of specimens containing circular 
holes. Moreover, this effect is different under different types of loading: in particular, the 
critical hole size is greater in torsion than in tension. Accurate predictions of this data could 
be obtained by combining the TCD with a critical plane theory – the Susmel-Lazzarin 
criterion; to my knowledge this is the first time that this type of analysis has been reported. 

 
 

1. INTRODUCTION 
Fatigue failures in industrial components occur, almost invariably, at stress concentration 
features such as notches. Therefore, any methods for the prediction of fatigue life or fatigue 
limit must consider the effect of such features, i.e. the creation of local regions of high stress, 
associated with stress gradients. Despite many decades of research it is still true to say that we 
do not have any agreed methods for predicting the effect of notches: the only exception, i.e. 
the only type of notch for which agreed methods of prediction do exist, is a crack. Thanks to 
the development of a theoretical framework in the form of fracture mechanics, we can agree 
that the fatigue limit of a body containing a crack corresponds to the stress intensity threshold 
for the material, ∆Kth. Of course even in this case there remain some complications (such as 
the variation of ∆Kth with the stress ratio R) and some areas of invalidity (such as short 
cracks) but at least we have a general framework in which to operate.  
 
However, no such agreed methodology exists for notches and other stress concentrators. This 
is not to say that there are not many possibilities, many approaches which have been proposed 
for the prediction of low cycle and high cycle fatigue life, but as yet no single approach has 
gained general acceptance. My own work has concentrated on high cycle fatigue, i.e. on 
problems which can be described as nominally elastic because any notch plasticity is small 
and contained. In recent years I have become interested in a series of approaches which can be 
grouped together under the general title “The Theory of Critical Distances” (TCD). These 
theories have been proposed, and reproposed, at various times throughout the past fifty years 
or so. They have been used not only for predicting fatigue but also for the analysis of 
monotonic fracture, especially in polymer composite materials (1). In recent years they have 
been largely forgotten as methods for fatigue limit prediction, as the research community has 
concentrated on theories based on the specific description of crack initiation and growth from 
notches. However, in recent work on the strength and fracture of materials it has been realised 
that materials possess inherent length scales which strongly affect their behaviour. In 
particular, the behaviour of notched specimens changes dramatically if the size of the notch, 



or of the specimen, becomes similar to the characteristic length scale of the material. There 
are different ways of formulating this characteristic length, and of using it – implicitly or 
explicitly – in predictions. The characteristic length which is used in the TCD is defined as 
follows: 
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Here ∆Kth and ∆σo are the fatigue crack propagation threshold for cracked specimens and the 
fatigue limit for plain (i.e. unnotched) specimens respectively, at the appropriate R ratio. 
Within the TCD, there are four methods by which these parameters can be used to predict the 
fatigue limit, as follows: 
 
a) The Point Method (PM) – the fatigue limit occurs when the stress range at a point located a 
distance L/2 from the notch root (i.e. from the point of maximum stress) is equal to ∆σo. 
b) The Line Method (LM) – the fatigue limit occurs when the average stress range along a 
line from the notch root, of length 2L, is equal to ∆σo. 
c) The Imaginary Crack Method – it is imagined that there is a crack, of length L, at the root 
of the notch, whose behaviour conforms to LEFM: the fatigue limit is associated with the 
threshold ∆Kth for this crack. 
d) The Finite Crack Extension Method, which we call Finite Fracture Mechanics (FFM) – the 
conditions necessary for crack growth are determined using a finite amount of crack 
extension, which is equal to 2L. 
 
The first three methods were proposed many years ago: the PM by Peterson (2); the LM by 
Neuber (3) and  the imaginary crack method by Lukas and Klesnil (4). The imaginary crack 
method was also proposed independently by ElHaddad et al (5) for the analysis of short 
cracks. The fourth method, in which an energy balance approach is used, calculating the 
strain-energy release over a finite amount of crack extension, is much more recent (6): we 
believe that it has the potential to make a link between the stress-based methods (PM and LM) 
and the actual mechanisms of fatigue crack growth from notches. 
 
Using the same value of L, as defined by equation 1, these methods can be shown to give 
predictions which are similar, though not always identical. In what follows we will use the 
Line Method, though it is likely that any of the other methods could also be employed using 
the same general methodology. 
 
The LM, and the other methods in the TCD, have been extensively tested against 
experimental data, (see, for example, (7) and (8)) but these investigations have concentrated 
on uniaxial tensile loading. In that case, the direction in which to draw the line suggests itself, 
by simple considerations of symmetry, as the notch bisector. For cases of stress concentrators 
which are not notches (e.g. corners, bends, keyways) we adopted a policy of using the 
direction perpendicular to the direction of maximum principal stress at the notch (which will 
also be the direction perpendicular to the surface at that point). Our justification was that this 
would be the direction of crack growth. Under conditions of multiaxial loading, which will be 
considered below, the use of this path may not be appropriate, nor will the use of the 



maximum principal stress as the characterising stress parameter. Multiaxial fatigue criteria 
can be divided into two types. The first type use parameters which can be defined as scalar 
quantities – the most common choices are the hydrostatic stress and some function of the 
deviatoric stress tensor; examples are the methods of Sines (9) and of Dang Van (10). The 
second type are the so-called ‘critical plane’ approaches, which avoid the complexities of the 
stress tensor by defining a single plane – assumed to be the plane on which early crack growth 
occurs – and using stress parameters defined with respect to that plane. Many critical-plane 
approaches have been suggested; the one which will be used here is the method suggested 
recently by Susmel and Lazzarin (11). The Susmel-Lazzarin (S-L) criterion can be written as 
follows: 
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Here τa is the amplitude of shear stress, τo and σo are the measured fatigue limits of the 
material in shear and tension respectively (expressed in terms of amplitudes) and σn,max is the 
maximum value of the tensile stress in the cycle. The tensile and shear stresses are referred to 
a plane which is chosen as the plane of maximum shear stress amplitude. The reason for using 
the maximum tensile stress rather than its amplitude, is to allow for R-ratio effects, though in 
the present paper only R=-1 will be considered.  
 
The S-L approach has been shown to be widely applicable for predicting the behaviour of 
plain specimens under multiaxial loading (11). Recently, we showed that it could be 
combined with the TCD (using the Point Method) in which form it was able to predict fatigue 
limits for large notches under various combinations of tension and shear, including pure 
torsion (12-14). These investigations considered large notches (i.e. notches of size much 
greater than L), with a range of root radii and stress concentration factors. 
 
 
2. THE SIZE EFFECT FOR HOLES IN TENSION 
 
One of the great advantages of the TCD, and of other methods using a characteristic length 
scale, is that notch size effects can be predicted very simply. In a qualitative sense, it is easy 
to see that, if the root radius of the notch is large compared to L, then the average stress over 
2L will be almost equal to the maximum stress at the notch root, so the full effect of the 
elastic stress concentration factor, Kt, will be experienced and the fatigue limit of the notched 
specimen (denoted ∆σon and defined as the nominal applied stress) will simply be equal to 
∆σo/Kt. At the other extreme, if the size of the notch is much smaller than L, then the average 
stress over 2L will be similar to the nominal applied stress, i.e. the stress concentration effect 
of the notch will not be experienced and so the fatigue limit of the specimen will simply be 
∆σo. Between these two extremes one can expect notches for which ∆σon is less than ∆σo, but 
by a factor less than Kt. 
 
Fig.1 shows some experimental data from Murakami (15) which illustrates the effect of 
fatigue limit on notch size. Here the notches were small circular holes drilled into the surfaces 
of specimens whose dimensions were relatively large compared to the holes themselves. The 
hole depth was equal to its diameter. The material was a 0.46%-carbon steel, in two different 



heat treatments, annealed and quenched. Fatigue tests were carried out in rotating bending 
(R=-1). 
 

Figure 1: Data from Murakami, showing the fatigue limit as a function of hole diameter in a 
0.46%-carbon steel. The lower data points are for the steel in the annealed condition; the 
upper data points are for the quenched condition. Theoretical predictions using the LM(solid 
lines) and the method of Murakami (dashed lines). 
 
 
It is clear that the diameter of the hole has a strong effect on the fatigue limit. Predictions 
were carried out using the LM which, as the figure shows, was able to describe the data very 
well. The values of L were 0.15mm and 0.023mm for the annealed and quenched material 
respectively. Murakami has developed a method of prediction for small features such as these, 
in which the fatigue limit is expressed as a function of the square root of the projected area of 
the feature, and a constant C: 
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This is an empirical law which has been shown to work well for small defects and other 
features such as inclusions. As fig.1 shows, this law, which gives a straight line on the 
logarithmic plot, is very successful in describing the data for the annealed material, rather less 
successful for the quenched material. It is also obvious (as Murakami himself has stated) that 
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this law is only applicable within a certain size range. The LM, however, is applicable for all 
notch sizes and will, in this case, successfully predict the levelling-off of the data to the plain 
fatigue limit ∆σo at very small hole sizes, and to ∆σo/3 for large holes (assuming that the 
specimen size remains effectively infinite). 
 
 
3. THE SIZE EFFECT IN TORSION 
 
Fig.2 shows further data from Murakami, in which the same 046%-carbon steel, in the 
annealed condition, was tested in torsion, using fully-reversed (R=-1) loading. The previous 
bending data are also shown for comparison: the stress parameter used is the amplitude of 
maximum principal stress, which is equal in magnitude to τa for the torsion case. It is 
immediately obvious that the extent of the size effect is different in torsion: holes up to 
100µm diameter have no effect on the fatigue limit, indeed it was reported that in many cases 
the fatigue failures initiated from elsewhere in the specimen. In contrast the 100µm holes 
tested in bending gave a fatigue limit (stress amplitude) of 201MPa, compared to 240MPa for 
plain specimens – a decrease by a factor of 1.2. Even 40µm holes – the smallest tested – had a 
slight effect in bending. 

 
Figure 2: Experimental data from Murakami for the same steel testing in bending and 
torsion. Predictions using the LM with the maximum principal stress. 
 
 
Fig.2 also shows predictions using the LM, taking the relevant stress parameter to be the 
maximum principal stress and using a line drawn perpendicular to the hole surface starting at 
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the point of maximum stress. It is clear that this approach gives a very poor prediction, 
especially at small hole diameters where it naturally tends to the tensile fatigue limit rather 
than the torsion value. At large hole diameters it deviates from the prediction for bending, due 
to the larger Kt factor of the hole in torsion, which has a value of 4. It is likely that the 
prediction would be accurate for very large holes, because the stress field close to the hot spot 
is essentially one of pure tension. 
 
Predictions were also made using the LM in conjunction with the Susmel-Lazzarin criterion. 
In this case a question arises as to the choice of the line over which to average the stresses. 
Fig.3 illustrates some possible choices; in this figure the axis of torsion is vertical. In the R=-1 
loading there will be four equal hot-spots. Three possible lines starting at the hot spot are 
considered: 
 
i) A line drawn perpendicular to the surface (which here is referred to as the 0o direction); this 
is the direction that was used in the earlier prediction and it also corresponds to the direction 
on which cracks were seen to grow during the experiments. 
 
ii) A line drawn so as to follow the maximum shear stress amplitude: this gives a curved line 
which is parallel to the hole surface at the hot spot, and turns through 45o as it extends.  
 
iii) A line drawn in the direction of the maximum shear stress at the hot spot: this line lies at 
45o to the free surface. 
 
We also considered a line which does not start at a hot spot – this is denoted the Horizontal 
Path on fig.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Schematic showing four possible choices for the line over which to evaluate 
stresses for the LM prediction. The hole, loaded in torsion about a vertical axis, has four 
equally-spaced hot spots. Three possible paths are shown emerging from a hot spot: a fourth 
path runs horizontally through the centre line of the hole. 
 

Horizontal Path Maximum shear stress path 

45o path 

0o path 



Fig.4 shows the results of using lines (i)-(iii), taking averaged values of shear and tensile 
stresses on the planes represented by these lines, and using equation 2 as the fatigue limit 
criterion. Predictions were made both analytically (using standard Airy stress functions) and 
using finite element analysis – there were no significant differences between the two methods. 
All three lines gave rise to fairly good predictions - in fact the maximum prediction error was 
only 19%, which is very acceptable considering the errors inherent in the experimental data 
and stress analysis. Interestingly, the 0o line predicts a slight increase in fatigue limit with 
increasing hole size for small holes. This result, which is rather counter-intuitive, arises 
because the gradient of tensile stress near the hot spot is very high, and the balance between 
tensile and shear stress changes as one moves away from the hole. The use of this line 
certainly demonstrates the large difference between tension and torsion, though it rather over-
predicts the insensitivity of holes in torsion. The curved path representing the maximum shear 
stress tended to underestimate the fatigue limits, though this is perhaps a useful feature for 
industrial design. The best choice turned out to be the path described by a straight line, 
inclined at 45o to the hole surface at the hot spot. 
 

 
Figure 4: Predictions using the LM with the S-L multiaxial criterion, using three different 
lines (see fig.3): two straight lines at different angles and one curved path representing the 
maximum shear stress. 
 
 
Of course any multiaxial fatigue approach must also be capable of working in the case of 
uniaxial loading. Fig.5 shows the results of applying the same approach (i.e. the LM 
combined with the S-L criterion) to the bending data, using the 45o path as this proved to be 
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the most accurate in predicting the torsion data. It can be seen that this approach also gives a 
successful, if slightly conservative, prediction of the bending data. The maximum error, in 
either the torsion or tension predictions using this strategy, was just 11%. 
 
 

 
Figure 5: Predictions for both torsion and bending data using the same approach: the LM 
combined with the S-L criterion on a path at 45o to the hole surface at the hot spot. 
 
 
Predictions made for the torsion case using the horizontal path were rather unusual: they gave 
a lower fatigue limit for small holes, rising to much higher values (greater than the plain-
specimen fatigue limit) for hole diameters greater than 1000µm. This behaviour occurs 
because, for this line, the stress at the hole surface is very small, and rises to a peak value at a 
distance of about one hole diameter (at which point it is about 15% larger than the nominal 
stress) and then decreases to the nominal stress at large distances. In principle, then, it would 
be possible for fatigue failures to occur from this region of peak stress, but in practice this did 
not happen – cracks initiated either at the hot spots or in places elsewhere on the specimen, 
remote from the hole. The reason for this is probably that the regions of peak stress occur only 
over rather small areas, so the probability of a crack initiating in these regions is low due to 
statistical size effects. 
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4. DISCUSSION 
 
These results raise several interesting questions, the first of which is “Why is the size effect 
different in torsion and in tension?”. The explanation can be found by comparing the stress 
fields created by these two types of loading, as shown in fig.6, which displays results obtained 
from FEA for the case of a hole loaded with a nominal stress of 100MPa in either tension or 
torsion. Consider a hole of diameter d=L=150µm: this is a critical value because holes of this 
size have almost no effect in torsion but quite a strong effect in tension. When making the 
LM/S-L prediction we use the shear and normal stresses averaged over a distance which, for 
this particular hole, will be r=2d. 

 
Figure 6: Results from FEA showing shear and normal stresses on 45o paths for a hole in 
tension or in torsion. The nominal applied stress was 100MPa: distance r from the hole 
surface is normalised by the hole diameter d. 
 
 
Over this distance the average value of the stresses in the tension case will be significantly 
larger than their nominal values of 50MPa, but in torsion the shear stress, whose value plays a 
dominating role in the S-L criterion (eqn.2), remains almost constant until much smaller 
distances, of the order of 0.2d. The rising value of normal stress near the hole does exert some 
effect but its role in the equation is relatively minor. The consequence of this is that the stress 
concentration effect of the hole in torsion will not really be felt until we are averaging over 
distances of less than 0.5d, i.e. when the hole diameter itself is of the order of 4L, which is 
600µm. 
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The second question we might ask is “why does the 45o path give the best predictions?”. The 
usual justification for the choice of the critical plane is that this is the plane of initial crack 
growth, i.e. of growth during the Stage 1 phase, which being shear-dominated tends to occur 
on planes of maximum shear stress and continues for distances of the order of the grain size. 
Thus we might expect initial crack growth to occur at 45o to the hole surface, and then to 
curve around to 0o as the crack length increased and Stage 2 (tension-dominated) growth took 
over. However, no such 45o growth is apparent in Murakami’s photographs of these 
specimens; it seems that crack growth closely follows the 0o path in both tension and torsion. 
 
Another explanation, then, may be that the 45o plane is critical not because it is the plane of 
crack growth but because it is the plane of dislocation motion, the active slip plane which will 
allow the mechanisms of crack initiation and growth to take place. It is well known that 
dislocation motion is strongly affected by the gradient of the local stress or strain: under high 
strain gradients dislocation motion is inhibited, and this leads to a number of interesting 
phenomena. For example, the measured hardness of a material increases with decreasing size 
of indentation. The explanation given for this phenomenon, which is known as Strain 
Gradient Plasticity (16) is that, in order to create a high gradient of plastic strain, extra 
dislocations are required (so-called ‘geometrically necessary dislocations’); the existence of 
these extra dislocations increases the amount of work hardening, hence increasing the flow 
stress. The effect of this in the presence case would be that dislocation motion would be more 
difficult around a small hole than around a large hole for the same applied stress, so fatigue 
cracking would be consequently more difficult as well. Materials exhibit strong effects of 
Strain Gradient Plasticity at size scales of the order of 100µm – very similar to the critical 
sizes of the holes in the present investigation. 
 
A final question that arises from the work is “Can the same approach be applied more 
generally, to all types of notches and multiaxial stress states?”. Of course this is a question 
which can only answered by making the attempt, but we already have some indications that 
similar approaches can be successful. For example, Susmel and Taylor applied the Point 
Method, in conjunction with the S-L criterion, to a range of experimental data on large 
notches in tension/shear and tension/torsion, including some experiments on sharp notches  
inclined to a tensile stress field to produce Mode I/II mixtures. Accurate predictions (usually 
within 20%) were achieved (12,14). We also successfully analysed data on specimens with 
circumferential notches tested in torsion (13), though this work raised some questions about 
the appropriate stress parameter to use and also about whether the critical distance, L, will be 
the same in torsion as in tension. Further work is certainly needed, but all the indications are 
that the Theory of Critical Distances has a useful role to play in the analysis of multiaxial 
fatigue behaviour. 
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