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ABSTRACT. Crack growth in non-linear quasi-brittle materials is addressed by a new approach. This approach is 
consistent with the Linear Elastic Fracture Mechanics framework ; the velocity field around the crack tip is 
represented by a sum of shape functions and their intensity factors. However, the LEFM kinematics is enriched 
to account for the non-linear behaviour of the material. Additional shape functions and their intensity factors 
are used to capture the effect of the nucleation of micro-cracks on the crack tip fields. So as to construct these 
shape functions, a multi-scale approach is employed. The discrete element method is used to compute the 
velocity field around a crack tip with boundary conditions extracted from finite element simulations. The results 
are post-treated using a proper orthogonal decomposition to generate additional shape functions for mode I 
and mode II loading conditions. Once this is done, the evolution of crack tip damage during a complex loading 
scheme is condensed into the evolutions of the intensity factors of the two additional shape functions.  
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INTRODUCTION 
 

eing able to accurately predict the leakage rate through a cracked or damaged concrete shell remains a major 
challenge to nuclear safety. It requires accounting explicitly for the presence of cracks and for crack opening, 
sliding and growth. However, linear elastic facture mechanics fails to model the permeability of cracked concrete 

shells. As a matter of fact, concrete and mortar display a non-linear behaviour because of their quasi-brittle nature. The 
crack tip process zone consists in a high number of micro-cracks among which some coalesce to promote macroscopic 
crack growth and others produce a shielding effect to the macro-crack.  
The discrete element method (DEM) is attractive to deal with this type of problems. The quasi-brittle material is modelled 
as a Voronoï tessellation of particles and a set of connections between them. The connections are modelled as cohesive 
forces. This first study is focused on tension loadings. At this stage, contact and friction forces can thus be neglected. The 
maximum allowable strain in each connection is statistically distributed so as to represent the heterogeneity of the 
material. The process of micro cracking is then described by the breaking of connections between particles and generates 
naturally the appropriate complexity (damage localization, cracks pattern formation, etc.). 
Nevertheless, modelling the behaviour of a nuclear core concrete shell by the DEM remains up to now out of reach. The 
aim of this study is thus to enrich the usual fracture mechanics framework so as to account for the quasi-brittle behaviour 
of the material. For this purpose, a scaling method is used to benefit from discrete element method simulations 
capabilities to build a non-linear fracture mechanics model. 
Instead of using classical LEFM fields to represent the velocity field, it was chosen to enrich the kinematics of the crack 
tip region by adding additional field that stand for micro cracking and damage. As in LEFM, these fields are expressed as 
the product of an intensity factor and of a shape function. The shape functions are defined a priori and are solely function 

B 



 

E. Morice et alii, Characterization of crack tip stress fields, Forni di Sopra (UD), Italy, March 7-9, 2011, 121-128                                              
 

122 
 

of space. The intensity factors are functions of time. In I+II mixed mode conditions, the evolutions of 4 intensity factors, 
a linear and a non-linear one for each mode thus fully characterize the behaviour of the crack tip region. The discrete 
element method [1] is used to compute velocity field evolutions that are post-treated to generate evolutions of the four 
intensity factors during complex I+II mixed mode loading schemes.  
 
 
DISCRETE MODEL 
 

n the considered discrete model [1], the material is described as a Voronoï particle assembly, representative of the 
material heterogeneity. A grid support is used for generated Voronoï particle centre in order to easily control mesh 
variability and to simplify the application of boundary conditions. Basically two types of interactions are considered, 

cohesive and contact force, however our study focuses only on tension loading, so we’ll consider only cohesive forces. 
 

 
 

Figure 1: Discrete model (a) and representation of Voronoï cells and their connections (b). 
 
Cohesive forces 
Interactions are limited to cohesive forces. Each particle has 3 degrees of freedom (2 in translations and 1 in rotation), and 
a 6 x 6 local stiffness matrix is adequate to represent the complete interaction. Following Schlangen and Garboczi [4], Van 
Mier et al. [5], an Euler-Bernoulli beam matrix is used in the model to connect each pair of neighbouring particles i and j.  
 
Non-linear behaviour 
Considering a perfectly elastic behaviour for the beams renders damage evolution. The breaking criterion for a connection 

ijP  between two particles i  and j , is function of the strain ij  of the beam used as a connector and of the rotation 

values i  and j  of particles i  and j : 
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cr  and cr  are two material parameters, the first one controlling essentially the tensile behaviour of the discrete model, 
and the second its compressive behaviour. These two parameters are statistically distributed so as to account for the 
heterogeneity of the material. 
 
 
BOUNDARY CONDITIONS 
 

omputations with the discrete elements method are driven in displacement. The displacement applied on the faces 
of the discrete model comes from a linear elastic finite element simulation. This method is used for various mode 
I + II mixed mode loading schemes. The finite element model corresponds to a 1m x 1m square plate with a 

centre crack with a length 2a = 100 mm. The area analysed using the discrete element method is a 12mm x 12mm square 
having the crack tip in its centre at the beginning of the calculation. The discrete element mesh was constructed so as to 
display a symmetry plane along the crack plane.  
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CRACK TIP FIELDS ANALYSIS IN MODE I & II LOADING CONDITIONS 
 
Partition hypothesis 

t this stage, the velocity field computed using the discrete element method is analysed to extract its main 
characteristics. First of all, it is aimed at building a model consistent with the fracture mechanics framework. The 
crack is thus modelled by a local plane and front, which makes possible defining a local axis system TR . The 

velocity field of a point P  in the crack tip region can then be calculated as: 
 

TRTRR tPvTPRRtTvtPv ),()/(),(),( 000
         (2) 

 

Where 0R  is the axis system of the model. In this equation, the first part stems from crack growth and deviation and the 

second part 
TR

tPv ),( is the velocity field within the axis system attached to the crack tip T . For the sake of simplicity 

TR
tPv ),( will be denoted by ),( tPv  in the following.   

The Mode I being symmetric and mode II anti-symmetric with respect to the crack plane and to the crack front, ),( tPv  
is then partitioned as followed into mode I and mode II part : 
 

),(),(),( tPvtPvtPv III           (3) 
 

Where the mode I and II parts are then calculated as: 
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The second step is to approximate the crack tip velocity field by a sum of products of shape functions and of intensity 
factors. For each fracture mode, a “linear elastic” shape function is first introduced to be consistent with the LEFM 
framework. Then an additional shape function is constructed to carry the non-linear behaviour of the crack tip process 
zone induced by the presence of micro-cracks. 
 
Linear elastic shape functions 
Linear elastic reference fields I

eu  and II
eu  are obtained from elastic simulations using the discrete model. Boundary 

conditions in displacement are provided by finite element simulations respectively in mode I and II from which the 
displacement field is extracted. In order to model a linear elastic response with the discrete element model, the 
connections between particles are all considered as unbreakable. The linear elastic reference field is then obtained after 
partitioning into mode I and mode II components the displacement field computed by the discrete element method. 
 
Construction of the additional shape functions 
To obtain the two additional fields, the discrete element model is loaded either in mode I or in mode II. The connections 
between particles are now allowed to break. The solution ),( tPv  of a monotonic loading case computed using the 
discrete element method is post-treated by an orthogonal decomposition algorithm. First, the velocity field ),( tPv  is 

projected onto the linear elastic reference fields. The projection onto I
eu  (resp. II

eu ) is denoted IK
~  (resp. IIK

~ ). IK
~  (resp. 

IIK
~ ) can slightly differ from the rate of the nominal applied stress intensity factor 

IK  (resp. 
IIK ). As a matter of fact, 

two types of stress can generate a “linear-elastic” response, the macroscopic stress field and the internal stress field, which 
can arise, for instance, from the shielding effect of micro-cracks within the process zone.  
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The residue is then calculated: 
 

( , ) ( , ) ( ) ( )res I
I ev P t v P t K t u P            (6) 

 

This residue can be decomposed in a sum of a product of spatial field, mutually orthogonal, and their intensity factors 

using the Karhunen-Loeve transform [3]. We only keep the first term )(Pu Ic  of this decomposition for each mode.  
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We will then assume that the two linear elastic reference fields I
eu  and II

eu  and the two additional fields I
cu  and II

cu  that 
were constructed using either linear elastic or non-linear conditions for monotonic mode I or mode II loading phases can 
be used to represent any complex mixed mode loading scheme. With this approximation:  
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This assumption is valid only if the process zone is confined inside an elastic bulk that controls and limits the movement 
inside the process zone. The Karhunen-Loeve transform was selected because it uses the self-correlation matrix of the 
movement. In other words, it partitions the movement inside the process zone into uncorrelated or independent 
movements. As a consequence, the intensity factors represent the independent degrees of freedom of the process zone. 

With this hypothesis, the evolution of the four intensity factors 
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e uuuu ,,,  is a condensed measure of the non-linear behaviour of the process zone. To verify the quality and the 

suitability of that hypothesis, the error associated to the approximation of the velocity field is calculated at each time step.  
 
Extraction of the intensity factors 
Having at our disposal an orthogonal basis of spatial reference fields  IIcI

c
II
e

I
e uuuu ,,, , defined a priori for a given 

material, makes possible to project the velocity field ),( tPv , obtained for any loading sequence, onto this basis.  

First the rate of the mode I (resp. mode II) linear-elastic intensity factor IK
~  (resp. IIK

~ ) is extracted as shown in Eq. 5. 

This rate is given in 1 smMPa  and is very close the rate of the nominal applied stress intensity factor 
IK  (resp. 

IIK ). 

We then proceed as follows to extract the rate of the mode I (resp mode II) non-linear intensity factor I  (resp II ): 
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Error calculation 
Once the four intensity factors are extracted, an approximation ),(~ tPv  of the computed velocity field ),( tPv  is provided 
in Eq. (8). It is useful to define two errors associated with this approximation: 
- the error )(1 tC , associated with a linear elastic representation of the velocity field 

- the error )(2 tC , associated with a non-linear representation of the velocity field. 
The error C1(t) and the relative error C1R(t) are calculated as follows: 
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The error C2(t) and the relative error C2R(t) are calculated as follows: 
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These errors will indicate us if the approach is valid and the difference between C1R and C2R will indicate us whether or 
not a non-linear approach is really needed, or in other word, when the process zone behaviour can be considered as 
having a linear-elastic behaviour or not. 
 
 
ADDITIONNAL FIELDS 
 
R-dependency 

o illustrate this method, the additional fields, I
cu  and II

cu , obtained by a proper orthogonal decomposition, were 

post-treated a second time so as to partition them into a function of the distance to the crack tip r and of the 
angular location .  

 

 ( ) ( ) ( )I I I
c c cu P g r f     and     ( ) ( ) ( )II II II

c c cu P g r f        (12) 
 

 
Figure 2: Comparison of r-dependence between mode I and II, r-components. 

 
In Fig.2, the r-dependency of the additional field is presented for each mode. That dependency is very similar for the two 
modes. The evolution appears to be roughly proportional to r-1. It is expected that this dependency is function of the 
distribution function chosen for the fracture threshold of the connections between particles. 
 

-dependency 
Since the -shape function )(IIorI

cf  has two components (a radial and a hook ones), it was chosen to represent it using 

the deformation of an initial circle induced by either the mode I (Fig. 3a) or the mode II (Fig. 3b) -shape function 

)(IIorI
cf   of the additional fields. In both cases, there is a discontinuity of the velocity field along the crack plane, the 

mode I component being symmetric and the mode II anti symmetric.  
 

  
                      (a)                  (b) 
 

Figure 3: Dependency in  of the complementary field in mode I (a) and II (b). 
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The opening of the circle ends in mode I, analogous to a CTOD, is interesting to make the mode I additional field in 
dimensionless. 
For the deformed circle in mode II, the displacement of the point in =-  and =, are of opposite sign, which is 
consistent with an anti-symmetric mode of fracture. This gap, analogous to a CTSD, can be useful to make the mode II 
additional field in dimensionless. 
 
 
INTENSITY FACTORS EVOLUTIONS 
  

omputations have been made for mode I and II cyclically increasing loading cycles. For each time increment, the 
velocity field computed using the discrete elements method is projected onto the basis of reference field that was 
constructed using previous calculations. Then the intensity factors extracted from each loading sequence can be 

plotted as a function of the nominal applied stress intensity factor. 

In Fig. 4, (a) and (c) the difference between IK
~

 and 
IK  (resp. IIK

~
 and 

IIK ) is plotted against the nominal applied stress 

intensity factor 
IK  (resp. 

IIK ). First of all it can be seen that there is nearly a factor 200 between 
IK  and IK

~
- 

IK . In 
the following this difference will then be neglected, the intensity of the linear elastic field can be considered as the nominal 
applied stress intensity factor for each mode, though a slight difference is observed, that is interpreted as a shielding effect 

induced by micro-cracks in the process zone ( IK
~

 < 
IK  ). From these calculations, this shielding effect is quite small. In 

addition, it is observed that this shielding effect is decreasing when the loading level increases and when new connections 
are broken. 
 

 
               (a)         (b) 

 
                         (c)                   (d) 
 
Figure 4: Evolution of linear-elastic and non-linear intensity factors with the stress intensity factor in mode I ((a), (b)) and in mode II 
((c), (d)). In Fig 4 (c) an arrow indicates the first loading ramp. 
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In Fig. 4 (b) and (d), the non-linear intensity factor I  (resp. II ) is plotted against the nominal applied stress intensity 

factor 
IK  (resp. 

IIK ). It is clear in this graph that I  (resp. II ) does not represent directly the damage of the process 

zone. In fact, I  (resp. II ) represent the contribution of micro-cracks to the velocity field in the process zone. When 

the process zone is loaded of unloaded below the maximum value of 
IK  reached during previous cycles, there is no 

longer break of connections. In other word, there is no micro-crack creation within the process zone. In this case, we first 

observe that the 
IK  - I  curve is a straight line and that its slope is constant. We also observe that the two errors C1R 

and C2R are both very small. During such loading and unloading phases existing micro-cracks do cyclically close and open.  
It is important to notice that I  is negative. As a matter of fact, the presence of micro-cracks ahead of the tip of the 
macro-crack is producing a shielding effect that can be expressed as a negative correction to the LEFM field. In fact, 
provided that the spatial distribution and the density of micro-cracks was known, conventional analytical methods (such as 
the distributed dislocation technics [6]) would allow calculating the exact solution for the velocity field in presence of 
micro-cracks and determine precisely that shielding effect.  

However, when new micro-cracks are created (when connections are broken) the slope of the 
IK  - I  curve changes. In 

addition, we observe that both C1R and the difference between C1R and C2R increase significantly during loading phases for 
which connections are broken (in any cases, it is found that C2R is small, well below 0.1%). 

The damage of the process zone is related to the slope of the 
IK  - I  curve during loading phases for which no micro-

cracks are created. The evolution law of damage is given by the variation of that slope during loading.  

The most interesting result is that in Fig. 4 (b) and (d) the slope of the 
IK  - I  curve increases when the amount of 

broken connections is increasing. In this first analysis we did not try to load the model above 0.2 MPa.m1/2, however, we 
can see that which indicates that the shielding effect of micro-cracks is progressively decreasing when the micro-cracks 
density is increasing.   
 
 
CONCLUSION 
 

n enriched kinematic is proposed to represent the crack tip field in quasi-brittle materials. A basis of reference 
fields was constructed once for all for a given material. It contains a linear-elastic and a non-linear field for each 
mode. During a complex loading scheme, the velocity field in the process zone computed using the discrete 

element method, is projected onto this basis so as to extract the intensity factors.  
The behaviour of the crack tip region can then be analysed through the evolutions of the four intensity factors of the four 
reference fields. For each mode, the intensity factor of the elastic-linear reference field is extremely close to the nominal 
applied stress intensity factor.  
The intensity factors of the non-linear reference fields represent the contribution of micro-cracks to the movement in the 
process zone for each mode. This contribution is negative, which indicates a shielding effect of micro-cracks on the 
macro-crack. The results show also that this shielding effect decreases progressively when the damage of the process zone 
increases (more connection are broken), the same phenomenon is observed for each mode 
The next step is to determine the relation between the material parameter (distribution of  and  ) on the reference 
fields (r-dependency and q-dependency). 
Then our aim is to use the discrete element method to generate curves as those plotted in Fig. 4 (b) and (d) and to use 
these curves to identify a non-linear constitutive model for fracture mechanics that would allow better predictions of the 
behaviour of cracks in quasi-brittle materials. 
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